TPLP: Page 1-8. © The Author(s), 2021. Published by Cambridge University Press 2021 1
doi:10.1017/xxxxx

Specifying and Reasoning about CPS through the Lens
of the NIST CPS Framework

THANH HAI NGUYEN, MATTHEW BUNDAS, TRAN CAO SON
Department of Computer Science, New Mexico State University, Las Cruces, USA
(e-mail: thanhnh@nmsu.edu, bundasma@nmsu.edu, stran@nmsu.edu)

MARCELLO BALDUCCINI, KATHLEEN CAMPBELL GARWOOD
Saint Joseph's University, Philadelphia, USA
(e-mail: mbalducc@sju.edu, kcampbel@sju.edu)

EDWARD R. GRIFFOR
National Institute of Standards and Technologies, USA
(e-mail:ledward.griffor@nist.gov)

submitted 04-Jun-2021; revised 24-Oct-2021; accepted 21-Jan-2022

Abstract

This paper introduces a formal definition of a Cyber-Physical System (CPS) in the spirit of the CPS Frame-
work proposed by the National Institute of Standards and Technology (NIST). It shows that using this def-
inition, various problems related to concerns in a CPS can be precisely formalized and implemented using
Answer Set Programming (ASP). These include problems related to the dependency or conflicts between
concerns, how to mitigate an issue, and what the most suitable mitigation strategy for a given issue would
be. It then shows how ASP can be used to develop an implementation that addresses the aforementioned
problems. The paper concludes with a discussion of the potentials of the proposed methodologies.

KEYWORDS: Attificial Intelligence, Knowledge Representation, Automated Reasoning and Planning,
Cyber-Physical System, Answer Set Programming, Concern Satisfaction, CPS Ontology

1 Introduction

The utility (potable water, wastewater) distribution systems, the electric power grid, the trans-
portation network, automated driving systems (ADS), hospital robots, and smart-home systems
are a few examples of cyber-physical systems (CPSﬂthat are (or soon to be) a part of our daily
life. Before any CPS is deployed into the real-world, several concerns need to be investigated
and addressed, e.g., why should someone trust that the CPS will perform its functions safely,
securely and reliably? How will such a system respond to a certain critical conditions and will
that response be acceptable? In other words, evidence must be gathered and argued to be suffi-
cient to conclude that critical properties of a CPS have been assured before its deployment. For
financial and practical reasons, the validation and verification of a CPS should be done as early
as possible, starting with its design. CPS are complex systems that evolve with use, requiring a
principled methodology and tools for developing an assurance case before release to the market.

! For brevity, we use CPS to stand for both the plural and the singular cyber-physical system.

mailto:thanhnh@nmsu.edu,bundasma@nmsu.edu,stran@nmsu.edu
mailto:mbalducc@sju.edu,kcampbel@sju.edu
mailto:edward.griffor@nist.gov

2 Thanh H. Nguyen, et al.

Such a methodology and the tools for applying it are two key contributions of this paper. We
present here a formalization of a CPS with a clearly defined semantics that enables the assess-
ment of critical system properties. The need for such a foundation for assurance can be seen in
the next example.

Example 1

Suppose that we would like to develop an Automated Driving System (ADS). We have two
constraints that we would like to enforce: (a) packets sent from the wind-sensor, a part of the
situational awareness module (SAM), to the main processor must be fast and reliable; (b) all
communication channel must be encrypted. We will refer to (a) and (b) as an Integrity concern
and Encryption concern, respectively.

Consider a situation in which the ADS has only one possible communication channel, which is
fast, reliable when encryption is disabled, but is not when encryption is enabled. In this situation,
the two constraints are in conflict with each other. It is impossible to satisfy both of them.

Assume that we also have some preference, called verification, which is related to the
verification of received data. Encrypted data would have been preferred to non-encrypted one.
If the wind-sensor uses the non-encrypted socket communication, it can satisfy (or positively
affect) the Integrity concern but it does not satisfy (or negatively affect) the verification
preference.

In this paper, we view a CPS as a dynamic system that consists of several components with
various constraints and preferences which will be referred as concerns hereafter. Given a concrete
state of the system, a concern might or might not be satisfied. We aim at laying the mathematical
foundation for the study of CPS’ concerns. This foundation must allow CPS developers and
practitioners to represent and reason about the concerns and answer questions such as (i) will a
certain concern or a set of concerns be satisfied? (ii) is there any potential conflict between the
concerns? and (iif) how can we generate the best plan that addresses an issue raised by the lack
of satisfaction of a concern? Readers familiar with research in representing and reasoning about
dynamic systems might wonder whether well-known formalisms for representing and reasoning
about dynamic systems such as automata, action languages, Markov decision process, etc. could
be used for this purpose. Indeed, our proposed framework extends these formalisms by adding a
layer for modeling the components and concerns in CPS.

To achieve our goal, we propose a formalism for representing and reasoning about concerns
of CPS. We will focus on the properties described in the CPS Framework (CPSF) proposed by
the CPS Public Working Group (CPS PWG) organized by the National Institute of Standards and
Technology (NIST) Griffor et al.|(2017a3b); Wollman et al.|(2017). This framework defines sev-
eral important concepts related to CPS such as facets (modes of the system engineering process:
conceptualization, realization and assurance), concerns (areas of concern), and aspects (clusters
of concerns: functional, business, human, trustworthiness, timing, data, composition, boundaries,
and lifecycle). These concepts are organized in an ontology which is easily extensible and allows
us to better manage development and implementation within, and across, multiple application
domains. We formally propose the notion of a CPS system that (i) considers constraints among
concerns; (if) enables the automatic identification of conflicts between concerns; and (iii) en-
ables the application of planning techniques in computing mitigation strategies. Building and
establishing upon CPSF are important properties of our research, which distinguish it from much
of the work done on CPS so far. While most of the prior research is focused on a specific class of
CPS or of aspects, e.g., CPS for smart grids or concerns related to cybersecurity [Uluagac et al.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 3

(2019), the methodology we provide is intentionally domain-independent and applicable to any
class of CPS.

The paper is organized as follows. Section [2] presents a brief overview of the CPS frame-
work, answer set programming, action language, and reasoning with ontologies using answer set
programming. Section [3] contains the main contribution of the paper, a formalization of a CPS
theory, which includes a specification of CPS domain and the semantics defining when a concern
is satisfied. It also formally defines several reasoning tasks related to the satisfaction of concerns
such as (i) when is a concern satisfied; (i) what are the most/least trustworthy components of a
CPS system; (iif) is the CPS system compliant; (iv) computing a mitigation strategy for a system
when some concerns become unsatisfied; (v) which mitigation strategy has the best chance to
succeed. Section 4] provides an answer set programming implementation of the tasks. The paper
concludes with the discussion of the related work. The paper is arranged in a way such that it
can be of interest to different groups of readers. Specifically, it separates the formal definitions
of a CPS, and the reasoning tasks associated with it, from a concrete implementation of the rea-
soning tasks. As such, a reader only interested in the formal theories would likely be interested
in Section[3] On the other hand, the code in Sectiond] would be of interest to readers who would
like to experiment with their own CPS.

2 Background

This section reviews the background notions that will be used in the paper, including the CPS
ontology, answer set programming, and the use of logic programming in ontology reasoning.

2.1 NIST CPS Framework and the CPS Ontology

One of the major challenges in designing, maintaining and operating CPS is the diversity of areas
of expertise involved in these tasks, and in the structure of the CPS itself. For example, develop-
ing a “smart ship” Moschopoulos| (2001) involves close interaction among, and cooperation of,
experts in disciplines ranging from cybersecurity to air conditioning systems and from propul-
sion to navigation. As demonstrated by, e.g., NASA’s Mars Climate Orbiteﬂ ensuring a shared
understanding of a CPS and the interoperability of its components is an essential step towards its
success — a goal that is made even more elusive by the fact that the areas of knowledge relevant
to a CPS vary greatly depending to the type of CPS considered.

For this purpose, NIST recently hosted a Public Working Group on CPS with the aim of
capturing input from those involved in CPS to define a CPS reference framework supporting
common definitions and facilitating interoperability between such systems, regardless of the type
of CPS considered. A key outcome of that work was the CPS Framework (Release 1.0, published
as three separate NIST Special Publications |Griffor et al. (2017a3b)); [Wollman et al.| (2017)),
which proposes a means of describing three facets during the life of a CPS: conceptualization,
realization, and assurance of CPS; and to facilitate these descriptions through analytical lenses,
called aspects, which group common concerns addressed by the builders and operators of the
CPS. The CPS Framework articulates the artifacts of a CPS in a precise way, including the
concerns that motivate important requirements to be considered in conceptualizing, realizing

2 https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

4 Thanh H. Nguyen, et al.

(including operating), and assuring CPS. Albeit helpful, being a reference framework the CPS
Framework only helps with the speci cation of a CPS and the discussion among experts. It does
not, by itself, reduce the amount of work necessary to analyze the CPS and its evolution of the
CPS lifecycle.

This realization gave impulse to the investigation that ultimately resulted i@B&Ontology
Balduccini et al. (2018); Nguyen et al. (2020a), which provides a CPS analysis methodology
based on th€PS Frameworkeaturing a vocabulary that describes and supports the understand-
ing and development of new and existing CPS, including those designed to interact with other
CPS and function in multiple interconnected infrastructure environments.

Fig. 1. NIST CPS Ontology

At the core of the CPS Framework and of the CPS Ontology are the notions of domains,
facets (conceptualization, realization and assurance), aspects and concerns, and a cyber-physical
functional decomposition. The product of the conceptualization facet is a model of the CPS
(requirements added to address prioritized concerns), the product of the realization facet is a CPS
satisfying the model and the product of the assurance facet is assurance case for the prioritized
set of concernsDomainsrepresent the different application areas of CPS such as automated
driving systems, electrical grid, et€oncernsare characteristics of a system that one or more
of its stakeholders are concerned about. They are addressed throughout the lifecycle of a CPS,
including development, maintenance, operation and dispBsgluirementare assertions about

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framewbrk

the state variables of a CPS aimed at addressing the concerns. The reader should note that, in
line with the current CPSF speci cation, we consider the tgnmpertyto be a synonym of
requirement, and we use the two terms interchangeably in the rest of this pejactsare the
elements of products of the facets for a CPS and include requirements, design elements, tests, and
judgmentsAspectsare the ten high-level concerns of the CPS Framework: functional, business,
human, trustworthiness, timing, data, communication, boundaries, composition, and lifecycle.

Functionalaspect is a set of concerns related to the sensing, computational, control, com-
munications and actuation functions of the CPS.

Businessaspect includes the concerns about enterprise, time to market, environment, reg-
ulation, cost, etc.

Humanaspect is a set of concerns related to how a CPS is used by humans or interacts
with them.

Trustworthinesgspect is a set of concerns related to the trustworthiness of CPS including
security, privacy, safety, reliability, and resilience. In this paper we adopt the de nition
of trustworthiness from the NIST CPS Framework, where the term is taken to denote the
demonstrable likelihood that the system performs according to designed behavior under
any set of conditions as evidenced by its characteristics.

Timing aspect: Concerns about time and frequency in CPS, including the generation and
transport of time and frequency signals, time-stamping, managing latency, timing compos-
ability, etc.

Data aspect includes the concerns about data interoperability including data semantics,
identify operations on data, relationships between data, and velocity of data.
Communicationaspect includes the concerns about the exchange of information between
components of a CPS.

Boundariesaspect is set of concerns about the interdependence among behavioral do-
mains. Concerns related to the ability to successfully operate a CPS in multiple application
area.

Compositioraspect includes the concerns about the ability to compute selected properties
of a component assembly from the properties of its components. Compositionality requires
components that are composable: they do not change their properties in an assembly. Tim-
ing composability is particularly dif cult.

Lifecycleaspect: Concerns about the lifecycle of CPS including its components.

The CPS Ontologye nes concepts and individuals related to concepts (with focubrost-
worthines} and the relationships between them (e.g., has-subconcern). Figure 2, excluding the
nodes labele€AM SAMandBAT and links labeled “relates” and “active”, shows a fragment of
the CPS ontology where circle nodes represent speci ¢ concerns and grey rectangle nodes repre-
sent properties. To facilitate information sharing, the CPS Ontology leverages standards such as
the Resource Description Framework (RIpEnd the Web Ontology Language (OWlfor de-
scribing the data, representing the entities and their relationships, formats for encoding the data
and related metadata for sharing and fusing. An entity or relationship is de ned in the ontology

3 This is a pragmatic choice dictated by our intent to provide a formal account of the NIST CPS Framework. The debate
on a universally accepted de nition of trustworthiness is on-going and is beyond the scope of this paper.

4 https:/www.w3.org/TR/rdf-concepts/

5 https://www.w3.org/TR/owl-features/

6 Thanh H. Nguyen, et al.

by an RDF-triple $ubject predicate objec). Below are the main classes and relationships in the
CPS ontology.

Aspects and Concernghe ontology de nes the highest-level concept@dncernwith its re-
nement of Aspect In the concern tree in Figure 1, the circle nodes of a concern tree represent
speci ¢ concerns which are individuals of cla€sncern The root nodes of the concern tree is

a particular kind of concern that is an instance of claspect(subclass ofconcern. Speci c
concerns are represented as individuglsstworthiness as an individual of claséspect
Security andCybersecurity of classConcern Edges linking aspects and concerns are rep-
resented by the relatidmas-subconcern . A relationhas-subconcern is used to associate a
concern with its sub-concerns. Thdsystworthiness aspechas-subconcern Security ,

which in turnhas-subconcern Cybersecurity

Properties.Properties of a CPS are represented by individuals of d¢tagperty. In the CPS
Framework, a concern can be addressed by a combination of properties. An edge that links a
property p with an aspect or concemis represented by the relati@midressed-by , which
says that concerais addressed by property For example in Figure 2 (LKAS domain), con-
cern Integrity has been addressed by some propertsesure-Boot , Advanced-Mode ,
Powerful-Mode , Normal-Mode andSaving-Mode .

To ease the reading, we provide a summary of the main classes and relationships in the CPS
ontology in Table 1.

2.2 Answer Set Programming

Answer Set Programming (ASP) Marek and Truszisky (1999); Niemed (1999) is a declar-
ative programming paradigm based on logic programming under the answer set semantics. A
logic programP is a set of rules of the form:

C ajiil;amnoth;:::;noth,
wherec, a's, andb's are literals of a propositional langudg@ndnot represents (default) nega-

tion. ¢ can be absent. Intuitively, a rule states tha;8 are believed to be true and none of the
bi's is believed to be true themmust be true. For a rulg r* andr , referred to as thpositive

Let P be a program. An interpretatidnof P is a set of ground atoms occurring fh The
body of aruler is satised byl if r* 1 andr \ | = 0. Aruler is satis ed byl if the body ofr
is satis ed byl implies| E ¢. Whenc is absentr is a constraint and is satis ed hyif its body
is not satis ed byl. | is a model ofP if it satis es all rules inP.

For an interpretatiohand a progran®, thereductof P w.r.t.| (denoted byP') is the program
obtained fromP by deleting(i) each ruler such thatr \ | 6 0, and(ii) all atoms of the form
not ain the bodies of the remaining rules. Given an interpretatiosbserve that the program
P! is a program with no occurrence nbt a An interpretationl is ananswer seGelfond and
Lifschitz (1990) ofP if | is the least model (wrt.) of P'.

A programP can have several answer sets, one answer set, or no answerisastid to be
consistent if it has at least one answer set; it is inconsistent otherwise. Several extensions (e.g.,
choice atomsaggregatesetc.) have been introduced to simplify the use of ASP. We will use and

6 For convenience, we often use rst order logic literals under the assumption that they represent all suitable ground
instantiations.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework

Class Meaning

Concerns that stakeholders have w.r.t. to a system, susdcasity integrity, etc.
Concern They are represented in the ontology as individuals. The link between a concern
and its sub-concerns is represented bytthg-subconcern relation.

High-level grouping of conceptually equivalent or related cross-cutting concerns

Aspect (i.e.,human trustworthinessetc). In the ontologyAspects subclass of class
Concern
Property Class of the properties relevant to a given CPS. The fact that a property addresses

a concern is formalized by relati@ddressed-by

Features of a CPS that characterize its state, e.g., if a component is on or off.
Con guration When property satisfaction can change at run-time, corresponding individuals
will be included in this class.

Actions are those within the control of an agent (e.g., an operator) and those that
occur spontaneously. Constraints capture dependencies among properties (e.g.,
mutual exclusion).

Action and
Constraint

Object Property Meaning

The object property represents tgs-subconcern relationship between the

cpsf:hasSubCon
concerns.

The object property represents thedressed-by relation between a concern

cpsf:addrConcern and a property.

The object property represents positive impact relation betweeopertyand a

cpsf:impactPositiverConcern

Table 1: Main components of the CPS Ontology

explain them when needed. Given a progranand an atona, we write P F a to say thata
belongs to every answer setPf P j ato say that belongs to at least one answer sePof

We illustrate the concepts of answer set programming by showing how the 3-coloring problem
of a bi-directed grapks can be solved using logic programming under the answer set semantics.
Let the three colors be red)(blue p), and greend) and the vertex set @ bef 0;1;:::;ng. Let
P (G) be the program consisting of

the set of atomedggu; V) for every edgdu;v) of G,
for each vertex of G, the rule stating that must be assigned one of the colors red, blue,
or green:

1f color(u; g) ; color (u;r) ; color(u; b)gl

8 Thanh H. Nguyen, et al.

This rule uses the choice atom, introduced in Nigiretlal. (1999), to simplify the use of
ASP. This atom says that exactly one of the atawisr(u; g), color(u;r), andcolor(u;b)
must be true.

for each edgdu;v) of G, three rules representing the constraint thandv must have
different color:

color(u;r);color(v;r);edggu;V)
color(u;b) ;color(v;b) ;edgqu; V)
color(u; g) ;color(v;g) ;edggu; V)
It can be shown that for each gra@h (i) P (G) has no answer set, i.e., is inconsistent iff the 3-

coloring problem ofG does not have a solution; anid) (f P (G) is consistent then each answer
set of P (G) corresponds to a solution of the 3-coloring problentadnd vice versa.

2.3 Action LanguageB

We review the basics of the action description languBg&elfond and Lifschitz (1998). An
action theory inB is de ned over two disjoint sets, a set of actioAsand a set of uentd-.

A uent literal is either a uentf 2 F or its negation f. A uent formulais a propositional
formula constructed from uent literals. An action domain is a set of laws of the following form:

Executability condition executableaif p1;:::;pn)
Dynamiclaw a causesf if pg;:::;pn (2)
Static CausalLaw f if pg;:::;pn 3)

wheref andpj's are uent literals andxis an action. (1) encodes an executability condition of an
actiona. Intuitively, an executability condition of the form (1) states thatan only be executed

if pi's hold. (2), referred to as dynamic causal laywrepresents the (conditional) effect aflt
states thaf is caused to be true after the executiomaf any state of the world wheng;:::; pn

are true. Whem = 0 in (2), we often omit laws of this type from the description. (3) represents a
static causal lawi.e., a relationship between uents. It conveys that whenever the uent literals

(3), (2), and (1) by, Dp, andDg, respectively, for each action domdn

A domain given inB de nes a transition function from pairs of actions and statessets
of states whose precise de nition is given below. Intuitively, given an adiand a stats, the
transition functionF de nes the set of statek (a;s) that may be reached after executing the
actiona in states. If F(a;s) is an empty set it means that the executioradf s results in an
error. We now formally de ne~.

Let D be a domain irB . A set of uent literals is said to beonsistenif it does not contain
f and: f for some uentf. An interpretation | of the uents inD is a maximal consistent set
of uent literals of D. A uent f is said to be true (resp. false) liiff f 2 1 (resp.: f 21). The
truth value of a uent formula in is de ned recursively over the propositional connectives in the
usual way. For exampld,® gis true inl iff f is true inl andgis true inl. We say that a formula
j holdsinl (or| satis esj), denoted by = j , if j is true inl.

7 statesare de ned later

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framew®@rk

Let u be a consistent set of uent literals akda set of static causal laws. We say thas
closed undeK if for every static causal law

inK,ifug p1”™:::” panthenu f. By Clk (u) we denote the least consistent set of literals from
D that containsi and is also closed und#. It is worth noting thaClk (u) might be unde ned.
For instance, ifi contains bothf and: f for some uentf, thenClk (u) cannot contaim and be
consistent; another example is thatiif f f;gg andK contains

fif h and thif f;9

thenClk (u) does not exist because it has to contain bothnd : h, which means that it is
inconsistent.

Formally, astateof D is an interpretation of the uents if that is closed under the set of
static causal lawK of D.

An actiona is executablén a states if there exists an executability proposition

executable a if fq;:::;fq

in D such thasE f1~ :::~ fn. Clearly, if n= 0, thena is executable in every state Bf The
direct effect of an action @ a statesis the set

e(a;9)=ffja causes f if fy;:::;fa2 D;sE fi ™M fao:

For a domairD, F (a;s), the set of states that may be reached by execuatings, is de ned as
follows.

1. If ais executable irs, then
F(as=fj Lisastate and’= Clk e(a;s)[s\ & g;
2. If ais not executable ig, thenF (a;s) = 0.

Every domairD in B has a unique transition functidh, which we call theransition function
of D. The transition function allows one to compute the set of states reached by the execution of

1. If n= O thenF (a;%) = S
2. If n> 0thenF (a;%0) = [y2F (a5 F (@%U) Wherea®=[ap;:::;a,] and ifF (a%u) = 0
for someu thenF (a;s) = 0.

2.4 Representation and Reasoning with CPS Ontology in ASP

Various researchers have explored the relationship between ASP and the Semantic Web (e.g.,
Eiter (2007); Nguyen et al. (2018b;a; 2020b)), in particular with the goal of leveraging existing
ontologies. In these works, an ASP program is used for reasoning about classes, properties, in-
heritance, relations, etc. Given ASP's nhon-monotonic nature, it also provides suf cient exibility
for dealing in a principled way with default values, exceptions and for reasoning about the effects
of actions and change.

We use a similar approach in this paper to leverage the existing CPS Ontology for reasoning
tasks related to CPS and concerns. Our approach includes the ability to query the CPS Ontol-
ogy for relevant knowledge and provide it to an ASP-based reasoning component. Because the

oOUhh WNBE

10
11
12
13

14

10 Thanh H. Nguyen, et al.

present paper is focused on the latter, for simplicity of presentation we assume that all relevant
classes, instances, relations, properties of the CPS ontology are already encoded by an ASP pro-
gram. We denote this program BYW) whereWdenotes the ontology, which is the CPS ontology

in this case. We list the predicates that will be frequently discussed in this paper.

class(X) :Xis aclass;

subClass(X,Y) : Xis a subclass of;

aspect(l) (resp.concern(l) ,prop(l) ,decomp_func(l)):1 isanindividual of class
aspect (resp. concern, property, decomposition function);

subCo(l,J) :Jis sub-concern of;; and

addBy(C,P) :concerrCis addressed by properB/(a link from a propertyP to a concern
C in the ontology);

positivelmpact(P,C) : The satisfaction of propertly impacts positively on the satis-
faction of conceriC.

func(F,C) :F is afunctional decomposition of concetn

Listing 1: P (W) :ASP program for CPS Ontologg/

class (X) - RDFtriple (X,* rdf :type"," owl:Class").

subClass(X,Y) :- RDFtriple (X," rdfs :subClassOf")Y), class (X), class (Y).

subClass(X,Y) :- subClass(X,2), subClass(Z,Y).

instance (I) - RDFtriple (I, rdf :type",” owl:Namedindividual®).

isinstanceOf (I,X) :- instance (1), class (X), RDFtriple (1," rdf :type",X).

isinstanceOf (l,Y) :- instance (1), class (X), class (Y), subClass(X,Y),
isinstanceOf (1,X).

concern(C) - instance (C), islnstanceOf (C,” cpsf:Concern").

aspect (A) - instance (A), islnstanceOf (A" cpsf :Aspect").

prop (P) - instance (P), isInstanceOf (P," cpsf :Property").

decompfunc (F) :- instance (F), islnstanceOf (F," cpsf:DecompFunc").

subCdl,J) :- concern (1), concern(J), RDFtriple (I," cpsf:hasSubCon"J).

addBy(C,P) :- prop(P), concern(C), RDFtriple (P," cpsf :addrConcern",C).

func (F,C) - decompfunc (F), concern(C), RDFtriple (F," cpsf:
decompFunctionOf",C).

positivelmpact (P,C) :- concern(C), prop(P), RDFtriple (P," cpsf:

impactPositively",C).
Listing 1 represents the ASP program (W) of CPS Ontology W. The predicate
RDFtriple(S,P,0) denotes the RDF triple store which has been queried and extractet\from
by using SPARQE. Lines 1-2 de ne thelass(X) andsubClass(X,Y) based on the ontol-
ogy extraction. Line 3 reasons the extension about subclass relationship. Lines 4-6 encode the
de nitions of instance(l) andisInstanceOf(l,X) with the similar method. The concern,
aspect, property and decomposition function instances are de ned in Lines 7-10. And, the three
rules in Lines 11-14 represent the encodingafCo(l,J) , addBy(C,P) , func(F,C) and
positivelmpact(P,C) relationships respectively.

Given a collection of individuals in the CPS ontology, P (W) will allow us to check
addBy(c; p), subCdi; j), func(f;c), positivelmpactp;c), etc; whether a concera is ad-
dressed by a propertg, concernj is a sub-concern of concein f is functional decompo-
sition of concernc, the satisfaction ofp impacts positively on concern, etc. respectively.

8 https://www.w3.0rg/TR/rdf-spargl-query/

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framewrk

They are written asP? (W) E addBy(c; p), P (W) F subCdi; j), P (W) F func(f;c),P (W) F
positivelmpactp;c), etc.

Similar rules for reasoning about the inheritance between concerns, inheritance between sub-
concerns and concerns, etc. are introduced whenever they are used subsequently. We note that
the CPS framework does come with an informal semantics about when a concern is supposedly
be satis ed. The work in Balduccini et al. (2018) provides a preliminary discussion on how the
satisfaction of a concern can be determined. It does not present a formal description of the CPS
system as in this paper and does not address the functional decomposition issue though.

3 CPS Theory Speci cation
3.1 Formal De nition

In this section, we develop a formal de nition of CPS theory and its semantics. The proposed
notion of a CSP theory will allow one to specify and reason about the concerns of the CPS.
Our discussion will focus ofrustworthiness aspect in the CPS ontology but the proposed
methodology is generic and is applicable to the full CPS ontology. To motivate the de nition, we
use the following example:

Example 2Extended from Balduccini et al. (2018)

Consider a lane keeping/assist system (LKAS) of an advanced car that uses a cahen(l

a situational awareness modulgA\N). The SAM processes the video stream from the camera
and controls the automated navigation system through a physical output. In addition, the system
also has a battenB@AT).

CAM and SAM may use encrypted memorgata _encrypted) and a secure boot
(secure _boot). Safety mechanisms in the navigation system cause it to shut down if issues are
detected in the input received from SAM. The CAM and SAM can be in one of two operational
modes, the basic modeasic _mode or b_mode) and the advanced modeadianced _mode or
a_mode). The two properties address concémtegrity relevant tooperation function. In
advanced mode, the component consumes much more energy than if it were in basic mode. BAT
serves the system energy consumption and relates with one of three propatiigs, _mode
(s_mode) or normal _mode (n_mode) or powerful _mode (p_mode). Three properties address
concernintegrity relevant to theenergy functionality.

The relationship betweersAM CAM and BAT are: () If both SAM and CAM are in
advanced _mode, the battery has to work irsaving _mode. (2) if CAMand SAM are in
basic _mode, the battery can be ipowerful _mode or normal _mode and @) if one of SAM
andCAMis in advanced _mode and the other one is ibasic _mode, then the battery must work
in normal _mode.

The relationship between the LKAS domain and the CPS ontology is shown in Figure 2. Infor-
mally, the CPSF de nes that the concdregrity is satis ed if secure _boot is satis ed

and its two functionalitiespperation andenergy , are satis ed; theoperation functional-

ity is satis ed if at least one of the propertiéadvanced _mode, basic _modeg is satis ed; and
theenergy functionality is satis ed if there is at least one bfaving _mode, normal _mode,
powerful _modeg properties is satis ed. Intuitively, this can be represented by the following

12 Thanh H. Nguyen, et al.

formula:
(secure _boot) * (advanced.mode_basic _-mod¢
A (saving -mode_normal _mode_ powerful _-mod¢

(4)

Fig. 2: CPS Ontology and LKAS domain

The example shows that a CPS system is a dynamic domain and contains different components,
each associated with some properties which affect the satisfaction of concerns de ned in the
CPS ontology. In addition, the satisfaction of concerns depends on the truth values of formulae
constructed using properties and a concern might be related to a group of properties. We will
write w (C) to denote the set of properties tlatdressea concerrc. We therefore de ne a CPS
system as follows.

De nition 1 (CPS Systejn
A CPS syster® is atuple CO; A;F; R G where:

COis a set of components;

Alis a set of actions that can be executed &er

F is a nite set of uents (or state variables) of the system;

Ris a set of relations that maps each physical compoo@atCO to a set of propertieR(co)
de ned in the CPS ontology; and

Gis a set of triples of the forrfc; fu;y) wherec is a concernfu is a functional decomposition
of concerrc, andy is a formula constructed over(c).

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framew8rk

In De nition 1, (A; F) represents the dynamic domain®f, Grepresents constraints on the sat-
isfaction of concerns in the CPSF ontologydn andR encodes the properties of components in

S which are related to the concerns speci ed in the CPSF. As the truth values of these properties
can be changed by actions, we assume that

[coocoR(co) [f active(co;p) jco2 CO;p2 R(co)g F:

where active(co; p) is true means that the componert is currently active with property

p. (A;F) is an action theory as described in Subsection 2.3. Note (#hdt) can be non-
deterministic due to the presence of statements of the form (3). Although it is possible, this
rarely happens in practical applications. We will, therefore, assuméAhB) is deterministic
throughout this paper. We illustrate De nition 1 in the following example.

Example 3
The CPS system in Example 2 can be describedShys = (COkas; Aikas Fikas: Rikas: Gkas)
where:

COkas= f SAMCAMBAT.
Fkas contains the following uents:

— active (X,P) denotes that componenf 2 COyys is working actively with prop-
erty P, e.g., active(cam,basic _mode), active(cam,data _encrypted) ,
active(sam,finger _printing) and active(bat,normal _mode) states that
the camera is working in basic mode, with encrypted data, the SAM is authenticated by
ngerprinting method and the battery is working in normal mode.

— on(X) (off (X)) denotes that componeXtis (isn't) ready for use.

— the set of properties that are related to the componéhtiefiotes that the truth value
of propertyP), e.g.,basic _mode, oauth , etc. These properties are drawn in Figure 2
(rectangle boxes except the three compong&#tsl, CAM, BAT).

The relationship among the uents are encoded below:

— active(BAT; savingmodg if active(SAM advancedmod§ ; active(CAM; advancedmod§
which encodes the statement if b@AMandCAMare inadvanced _mode, the battery has
to work insaving _mode.

— active(BAT;normalLmodg if active(SAM advancedmodg ;active(CAM;basicmod§
and
active(BAT;normalmodg if active(SAM basicmodg ;active(CAM;advancedmodg
encode the statement if one 8AMand CAMis in advanced _mode and the other one is
in basic _mode, then the battery must work itormal _mode.

— active(BAT; power fuLmodg _ active(BAT; normal.mod§ if active(SAM basicmode ;
active(CAM; basicmodg which encodes the statement if boSAMand CAMare in
basic _mode, the battery can be ipowerful _mode or normal _mode.

Aikas contains the following actions:

— switM (X;M: switching the componenX to a modeM. The set of the form (1) and
(2) for the action that switches theAMfrom basic _mode to advanced _mode
switM (camadvanced mod@ contains the following statements:

14

Thanh H. Nguyen, et al.

— executable switM (camadvanced.mode if on(can);active (cambasic _.modé
which says that the actioswitM (camadvanced. mod@ can only be executed if the
componentCAMSs on and in thédasic _mode.

— switM (camadvanced. modé causes active (camadvanced.modg;

. active (cambasic _-mode.
This states that if we switch the compon€&#Mo theadvanced _modethenitisin
theadvanced _mode and not in thebasic _mode.

The statements for switM (cambasic .mod¢ that switches the CAM from
advanced _-mode to basic _mode are similar. And the similar statements for
switM (sambasic _.modé and switM (samadvanced. mod¢ which switch the compo-
nentSAMto basic _mode andadvanced _mode respectively.

There are also actions that switch other components to different modes or methods. These
are:

— switA (X A): switching between authorization methods wheére SAM

— switV (X V): switching between veri cation methods wheXecan beSAMor CAM.

— sWItEM(X; ENJ: switching between encryption method wherean beSAMor CAM.

— swWitEA (X, EA: switching between encryption algorithms whefecan beSAM or
CAM.

The set of statements of the form (1) and (2) associated with these actions are similar to
those associated wigwitM (X, M and is omitted here for brevity.

tOn(P) andtOff (P) denote the actions of enabling and disabling the truth value of prop-
erty P, respectively. The sets of statements of the form (1) and (2) associated to each of
these actions is similar. We list those associated t@ti(P) as an example:

— executabletOn(basic _.modg¢ if : basic _mode this can only be executed if the sys-
tem property is not in thbasic _mode.
— tOn(basic _mod¢ causeshasic _-mode set the system property tmsic _mode.

patch (P) denotes action of patching some properBegith available patch software. The
set of statements for actigratch (P) could be:

executablepatch (conn_encrypted) if : conn_encrypted ;availablePatch (conn_encrypted)
patch (conn_encrypted) causesconn_encrypted

Rkas = fTCAM 7! fip filtering , algo DES algo AES algo _RSA data _encrypted ,
conn_encrypted , maccheck, protocol _encrypted, secure_boot, basic _mode
advancedmode trusted _auth _device, trusted _environment, iris _scang, SAM
7! f data_encrypted, algo_RSA , algo DES algo_AES protocol _encrypted ,
connencrypted , firewall _setup, maccheck, ip filtering ,advanced.mode
basic _.modefinger _printing ,two_factors ,iris _scan, oauth ,opt_code, email _verify

ip check , trusted _environment , secure_bootg, BAT 7! f powerful _-mode

trusted _environment , normal_mode saving _modgg.

The components and relations to the properties are illustrated by the arrow lines with “relates”
labels in the bottom part of Figure 2.

Gkas contains the following triples (see also Figure 3):

— (integrity ~ , operation , advanced _mode _ basic _mode) says the satisfaction of for-

mulaadvanced _mode _ basic _mode addresses the concermegrity in the relevant
functional decompositionperation

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framewbrk

Fig. 3:Integrity andAuthorization concerns with their Functionalities and Properties

— (integrity , energy , saving _mode _ normal _-mode _ powerful _mode) denotes
the formulasaving _mode _ normal _mode _ powerful _mode addresses the concern
integrity in the relevant functional decompositienergy .

— (authorization , sign _in , oauth " opt _code) denotes the satisfaction of formula
oauth " opt _code addresses the relevant functional decomposkiigm _in of the con-
cernauthorization

— (authorization ,sign _in ,two _factors _ finger _printing _iris _scan) denotes
the formulatwo factors _ finger _printing ~_ iris _scan addresses the concern
authorization in the relevant functional decompositisign _in .

— (authorization ,sign _in ,oauth " ip _check " email _verify) denotes thatthe con-

cernauthorization with the relevant functional decompositisign _in is addressed
by formulaocauth ™ ip _check " email _verify

In addition, the functional decomposition of thelntegrity concern in-
dicates that the formula (secure_boot) ~ (advancedmode basic _modg *
(saving _mode_normal_mode_powerful _-modé addresses thategrity concern.
Likewise, the formula

trusted _auth _device ” trusted _environment *
(two_factors _ finger _printing _ iris _scan _
(oauth ~ opt _code) _ (oauth ” ip _check” email _verify))

addresses theuthorization concern.

Given a CPS syster8 with a set of uentsF, astate sof S is an interpretation oF that
satis es the set of static causal laws of the form (3) (Subsection 2.3).

De nition 2 (CPS Theory
A CPS theoryis a pair(S ;1) whereS is a CPS system aridis a state representing tivatial
con gurationof S .

3.2 The Semantics of CPS Theories

Given(S ;1) whereS =(CO;A;F;R;G), the action domaifA; F) speci es a transition function
F s between states (Subsection 2.3). In each state, the satisfaction of a particular concern in the
CPSF is evaluated using the relationsRipnd the components. We will de ne this relation

16 Thanh H. Nguyen, et al.

next. First, we note that a concern in a CPS can be related to some compor@ntslinectly
through theR relation and the formulae i or indirectly through the inheritance in the CPS
ontology. Observe that the development of the CPS relies on the following intuition:

A concern might have several sub-concern;
A concern might be addressed by a set of functional decompositions which are represented
by Boolean formulae.

This leads to the following informal meaning of the notion of satisfaction of a concern in a
state of the CPS:

For each concerr, if G does not contain any tuple of the for(o; fu;y) thenc is
satis ed in a states when every of its direct subconcerns is satis ed; for example, the
Trustworthiness concern is satis ed in a stateof the LKAS system if its children,
Safety , Reliability ,Security , Resilience , andPrivacy , are satis ed; and
every of its properties is satis ed.

For each conceraq, if Gcontains some tuple of the fora; fu;y) thencis satis ed when
Ye="(ctuy)2cy issatis edinsand every propertp related tac-as speci ed by the CPS
ontology—is satis ed irs; for example, theéntegrity concern is satis ed in the state

of the LKAS system if the formula (4) is satis ed mwheresecure _boot is a property
related tolntegrity and the other conjuncts are the two disjunctions representing the
two functional decomposition ofitegrity

Next, we formalize precisely the notion of satisfaction of a concernLI(e} be the conjunc-
tion of * ¢, ruy)2cy and all properties that are relatedd@and not appearing in any formula of
the form(c; fu;y) 2 G. For example, in formula (4), the last two conjuncts are the two func-
tional decompositions dftegrity from Gas and the rst conjunct is a property that does not
appear in any functional decompositioniaegrity . In the following, we denotéxi is the set
of descendants afsuch that for eact 2 hci, d has no sub-concern.

De nition 3
Letsbe astateitt =(CO;A;F;R;G andc be a concern. We say thatis satis ed in sdenoted
bysfF c, if

sF L(c); and
every sub-concerd’of ¢ is satis ed bys.

Having de ned when a concern is satis ed in a state, we can de ne the notion of satisfaction
of a concern after the execution of a sequence of actions as follows. Recall the transition function
F s dictates how the system changes from one state to another state and the set of states resulting
from the execution of a sequence of actianfrom a state can be computed 63 . Therefore,
we can de ne the satisfaction of a concerafter

De nition 4

Let (S ;1) be a CPS theoryg a sequence of actions, and concern in the CPS Ontology.
is satis ed after the execution of a sequence of actiangrom the initial statel, denoted by
(S ;1) F cafter a, iff

Fs(a:;)8 0"8u2Fs (a;l):[uE (5)

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framewadrk

In the above de nition, the conditiok (a;1) 6 0 guarantees that is a valid sequence of
actions, i.e., its execution ihdoes not fail. The second condition is the standard de nition of
logical entailment.

De nitions 3-4 provide the basis for us to answer questions related to the satisfaction of a
concern in a state or after a sequence of actions is executed, i.eqrtbern satisfactioprob-
lem. In the following, we will discuss other problems that are of importance for the design and
development of CPS systems.

3.3 Reasoning Tasks in CPS

Knowing when a concern is (is not) satis ed is very important. We now discuss the issues related
to the satisfaction of concerns in a CPS. We focus on the following problems:

1. What is the most/least trustworthgomponent in a CPS?

2. Are there non-compliance in a given CPS? How to detect non-compliance?

3. What to do if an (external or internal) event occurs and leads to an undesirable situation?
How to recover from such situation?

4. What is a best or most preferred mitigation strategy for a given situation?

n what follows, we provide precise formulations of the aforementioned tasks and propose
solutions for them. For simplicity of presentation, we focus on discussing these questions with
respect to a given state. The answers to these questions after the execution of a sequence of
actions from the initial state can be de ned similarly to the de nition of the satisfaction of a
concern via the functiof, as in De nition 4. Our implementation covers both situations.

3.3.1 Most/Least Trustworthy Components

GivenS =(CQOA;F,R;G and a statsin S . A componenix 2 CO might be related to many
concerns through the propertiesRiix), whose truth values depend on the stateecall that for
each property and component, active(x; p) is true insindicates that component is active with
propertyp in the states; furthermore, the CPS ontology contains the speci cation thabsi-
tively or negativelyimpacts a concera The latter are de ned by the predicas$dBy(c; p) and
positivelmpactp; c) in W(Subsection 2.4). As such, when a component is active with a property,
it can positively impact a concern. For example, in Figure 2 and 3, the progtye _boot
addresses themtegrity concern and is described to impact positively on the satisfaction of
Integrity concern byW. In the current state, the compone3iMis working on property
secure _boot . Assuming that concenmtegrity is satis ed in this state, we say that compo-
nentSAMdirectly positively affectso theintegrity concern through propertsecure _boot .

We say that a componenrtdirectly impactsa concerrc in states through a property if the
following conditions hold:

1. xworks with propertyp in states; and
2. p addresses concecandpis true ins.

9 Recall that our discussion focuses on trustworthiness but it can easily be adapted to other aspects de ned in the CPS
ontology.

18 Thanh H. Nguyen, et al.

If x directly impactsc in states throughp and the CPS ontology speci es that the satisfaction of
propertyp impacts positivelpn the satisfaction af andc is satis ed in states, then we say that
x directly and positively affects ¢

As the notion of concern satisfaction is propagated through the sub-concern relationship, it
is natural for us to de ne that componeximpacts(resp.affects positivelyconcernc through
propertyp in a states, denoted bympact(x; c;s) (resp.pos(x; p; c;s)), if (i) x directly addresses
(resp. direct positively affectg)through a property; or (ii) there exists some sub-conceftof
cthat is addressed (resp. positively affectedxby

In the above example (see also Figure 2), the compadextlirectly positively affectto the
Integrity concern through propertsecure _boot thenSAMalsoaffects positivelyconcerns
Cyber-Security , Security — and Trustworthiness in the concern tree through property
secure _boot .

Given a componemnt, the ratio between the number of concerns that are positively affected
by x and the number of concerns that are addresseddharacterizes how effectivelyin u-
ences the system. For this reason, we will use this number to characterize the trustworthiness of
components in the system. So, we de ne

SR i fcj s ¢ positivelmpactp;c) * p2 s™ active(x; p)gd
Spr ifcj(s8 c_: positivelmpactp;c)) * addBy(c; p) * p2 s” active(x; p)gj+1
(6)
Assume that all concerns and properties are equally important, we could compare the trustwor-
thiness of a componert2 CO with that of a component®2 CO by comparing the ratiotsw.

tw(x;s) =

De nition 5
Fora CPS systel8 = (CO;AF;R;G), X1;% 2 CO, and statesof S

X1 is more trustworthythanx, in s, denoted by; s Xz (or Xz is less trustworthythanx;, denoted
byxo sxq), if

— tw(X;S) > tw(x2;9); or
— tw(xg;9) = tw(xo;s) = 0 andimpact(xy;s) < impact(xz; s) where
impact(x;s) = Spry J fCj (s6 c_: positivelmpactp;c)) * addBy(c;p) * p 2 s*
active(x; p)g .
X1 is as trustworthy asxin s, denoted by, ¢ Xo, if

— tw(xg;9) = tw(xg;s) > O; or
— tw(xg;9) = tw(x2;s) = 0 andimpact(xy;s) = impact(xz;s).

X1 sXp denotesthat; sXp 0rxs gXo.Xis amost (least) trustworthy component®fin sif
x $xX0(x% x) for everyx?2 CO.

Proposition 1
Let S = (COAF,R,G be a CPS system arglbe a state irS . The relation s over the
components of is transitive, symmetric, and total.

Proof
Itis easy to see that for any pair of components, eitherscy, ¢, sC1,0rcy sCz. Furthermore,
c sc. ltfollowsthat ¢is therefore transitive, symmetric, and total]

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framew8rk

3.3.2 Non-compliance Detection in CPS

The design of a CPS is often subject to competing constraints from various people or organiza-
tions with different focus and type of expertise. This may result in sets of constraints that are

unsatis able, e.g., a set of concerns cannot (never) be satis ed, giving rise to a non-compliance.
Example 1 shows that there exists a situation in which competing concerns cannot be satis ed at
the same time. In general, the problem is formulated as follows.

De nition 6 (Lack of Compliance
Given the CPS syste® = (CO;AF;R;G), an integemn, a set of action§A A, and a set of
concernsSC we say that is

. weakly n-noncompliantirt. (SA SO if there exists a sequeneeof at mostn actions inSAand
an initial statd, such tha(S ;1) 6j c after a for some concere2 SC

. strongly n-noncomplianivrt. (SA SO if for every sequenca of at mostn actions inSAand an
initial statel, (S ;1) 6j cafter a for some concera2 SC

Given an integek, weakly k-noncomplianimplies that there is a potential that some concern
in the setSCof concerns might not be satis e&trongly k-noncompliarindicates that there is
always some concern that cannot be satis ed. Systems thatrargyly k-noncomplianmight
need to be re-designed.

It is easy to see that, by De nition 4, checking whether a systeweiakly k-noncompliaris
equivalent to identifying a plan of lengkor less that “makes some concern unsatis ed.” On the
other hand, checking whether a systensti®ngly k-noncomplianis equivalent to identifying
a plan of length less thanthat “satis es all concerns”. Since we assume that the speci cation
language for CPS is propositional and planning for bounded plans is NP-complete, we can easily
derive the following results:

Proposition 2
GivenS , (SA SO, andk, checking whethe§ is weakly k-noncompliaris NP-complete and
checking whethe$ is strongly k-noncompliaris co-NP-complete.

Proof
This relies on the fact that checking whether a planning problem has a solution of lerggth
NP-complete (e.g., thetRN-LENGTH problem in Ghallab et al. (2004)). 1

3.3.3 Mitigation Strategies

Let S =(COAF,R, G be a CPS system arglbe a state oS . When some concerns are
unsatis edin s, we need a way tmitigatethe issue. Since the execution of actions can change
the satisfaction of concerns, the mitigation of an issue can be achieved by identifying a plan that
suitably changes the state of properties related to the concerns. The mitigation problem in a CPS
can be de ned as follows:

De nition 7 (Mitigation Strategy

LetS =(CO;A;F;R G be a CPS domain argla state inS . Let S be a set of concerns W.
A mitigation strategyaddressing is a plana whose execution at the initial staggesults in a
states’such that for everg 2 S, cis satis ed ins’

S

20 Thanh H. Nguyen, et al.

De nition 7 assumes that all plans are equal. This is often not the case in a CPS system. To
illustrate this issue,

Example 4

Consider the LKAS system in Example 2. The initial stitg; is given by:CAMandSAMare in
basic _mode andsecure _boot , BATIs in powerful _mode and every properties ilxas are ob-
served to b8rue The energy consumption constraints8afT are encoded in Listing 2. Figure 4
shows a fragment of the CPS theory that is related to the problem described in this example.

Fig. 4: Current con guration obyy,s related tantegrity concern after cyber-attack

Listing 2: P§, ... Battery consumption constraints ixas

Ikas®

h(active (bat,saving_mode),T) :- h(active (cam,advanced_mode),T),

h(active (sam,advanced_mode),T), step (T).
1{ h(active (bat,powerful_mode),T); h(active (bat,normal_mode),T)}1 :-

h(active (cam,basic_mode),T), h(active (sam,basic_mode),T), step (T).
h(active (bat,normal_mode),T) :- h(active (X,advanced_mode),T), XI=Y,

h(active (Y,basic_mode),T), step (T).
- h(active (bat,M1),T), h(active (bat,M2),T), M1I=M2, step (T).

A cyber-attack occurs and the controller module is attacked, which céasies _mode to
becomeFalse while advanced _mode is (True). Given this information, we need a mitigation
strategy for the se® = f Integrityg. The mitigation strategies (with the length is 2) can be gener-
ated as following:

a1=[tOn(basic _mode)]

ao= [switM(cam,advanced _mode) ; switM(sam,advanced _mode)]
as= [switM(sam,advanced _mode) ; switM(cam,advanced _mode)]
as= [switM(sam,advanced _mode) ; tOn(basic _mode)]

as= [switM(cam,advanced _mode) ; tOn(basic _mode)]

As shown in the example, it is desirable to identify tiestmitigation strategy. In this paper,
we propose two alternatives. The rst alternative relies on a notion called likelihood of satisfac-
tion of concerns and the second alternative considers the uncertainty of actions.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Frame®rk

Likelihood of Satisfaction (LoS) of Concerit8e introduce a notion calletikelihood of sat-
isfaction (LoS) of concermnd use it to distinguish mitigation strategies. Our notion relies
on the positive impacts of properties on concerns within the system (Subsection 2.4). For
example, propertysecure _boot positively impactsintegrity in Example 2 (denoted by
positivelmpact(secure _boot,integrity)). For a concerie, we denote withrel™ (c) the

set of all properties that positively impact a concerrFurthermorefel?,;(c;s) is the set of
properties irrel™ (c) which hold in states. The ratio between these two numbers can be used to

characterize thpositive impact degreef concernc in states as follows:

8 .
< jrelix(c9)j

; +
deg (9= Jrelr(g o 980

(7)

1 otherwise

We note thatel?,; andtw might appear similar but they are different in the following way:
relf,; is concerned with the relationship between properties and concerngwliideuses on the
relationship between components and concerns.

We de ne the likelihood of satisfaction of a concern as follows.

De nition 8 (Likelihood of Concern Satisfactipn
Given a CPS syster , a statesin S , and a concern, the likelihood of the satisfaction (LoS)
of cin s, denoted by | ¢s(c;9), is de ned by:

deg (c;s) Pyosut(o)] Los(xs) if sub(c) 6 O

J Los(C:9) = deg (c;9) if sub(c)= 0 ®

wheresub(c) is the set of subconcerns of

Having de ned the LoS of different concerns, we can now use this notion in comparing mitiga-
tion strategies. It is worth to mention that CPSF de nes nine aspect, i.e., top-level concerns, (e.g.,
trustworthiness , functionality , timing , etc.). LetT Gy be the set of top-level concerns

in the CPS ontology. We discuss two possibilities:

Weighted LoSEach top-level concern is associated with a number, i.e., e&hi Gy

is associated with a weight (e.g., Wrunctionality for functionality » Werustworthy for
trustworthiness , etc.). The weights represent the importance of the top-level concerns
in the CPS. They can be used to compute the weighted LoS of a s@stenstates

W(S ;9 = Scatgyl Los(C:S) We 9)

This weighted LoS can be used to de ne a preference relation between mitigation strategies
suchad a (a is better tham) iff maxrg (a9 W(S ;8 Maxpeg (b9 W(S ;).

Speci ed Preferences Lo&\n alternative to the weighted LoS of a system is to allow
the users to specify a partial ordering over the B&{y which will be used to de ne a
preference relation among mitigation strategies using well-known preference aggregation
strategies (e.g., lexicographic ordering). For exampldsufctionality > Business

then a mitigation strategg is better than a mitigation stratedp; written asb a, iff

MaXwr, (a:g) Los(Functionality ;s) maxpr, (b9 Los(Business;s) .

It is easy to see that the above preference relatias also transitive, symmetric, and re exive
and if some strategies exist then most preferred strategies can be computed.

Example §Continuing from Example)4

22 Thanh H. Nguyen, et al.

Let us consider the strategies generated in Example 4. All ve mitigation strategigs{ as;as
andas) generated in Section 4.4 can be used to address the issue raised by the cyber-attack.
Speci cally, the fragment of nal stateGs,,) relevant tantegrity concern of each plara() is
given below:

Ga, is fCAM/! basic .mode CAM7! secure_boot, SAM7! basic .mode SAM7!
secure _boot, BAT7! powerful _.modeg or f CAM/! basic _.mode CAM! secure _boot,
SAM! basic .mode SAM! secure _boot, BAT7! normal_modeg.

In which, we de neG{}11 isf CAM! basic _.mode CAM! secure _boot, SAM'! basic -mode
SAM! secure _boot, BAT7! powerful _modeg, ande11 is f CAM! basic _.mode CAM!
secure _boot, SAM'! basic _mode SAM! secure _boot, BAT7! normal _modeg.

Ga, and Ga,: fCAM! advancedmode CAM! secure _boot, SAM/! advanced.-mode
SAM! secure _boot, BAT/! saving _modeg

Gy, is fCAM/! basic _mode CAM/! secure _boot, SAM7! advancedmode SAM/!
secure _boot, BAT7! normal _modeg

Gq, is fCAM/! advancedmode CAM/! secure _boot, SAM/! basic _mode SAM/!
secure _boot, BAT7! normal _modeg
In each considered state, the statemént! P denotes that component X is working with

propertyP. For exampleBAT7! saving _.modesays that the battery is working in saving mode.
Considering the ve nal con gurations of different mitigation strategies in the example

above, we have:

ded” Integrity, G, =0.6, | Los Integrity,G}, =0.6;

deg Integrity G2, =0.4, | Los IntegrityG3 =0.4;

degd’ (Integrity, Ga,) = 0.8, | Los(Integrity,Ga,) = 0.8;

deg” Integrity,Ga, =0.8, j Los Integrity,Ga, =0.8;

degd’ (Integrity,Ga,) = 0.6, | Los(Integrity,Ga,) = 0.6 and

ded Integrity,Ga; =0.6, | Los Integrity,Ga; =0.6
We also have thaded' (availability;) = 1, ded (security_) = 1, ded (trustworthiness) = 1,
etc. In addition, we also have the LoS valuesro$tworthiness aspect in the ve different
nal con gurations as following:

j Los TrustworthinessG} = 0.0497,

j Los TrustworthinessG3 = 0.0331,

j Los(TrustworthinesgG,,) = 0.0662,

j Los TrustworthinessG,, =0.0662,

j Los(TrustworthinesgG,,) = 0.0497, and

j Los TrustworthinessG,, =0.0497.

Figure 5 shows theustworthiness tree for the nal con gurations of mitigation strategies
az andas (Ga, andGg,), where LoS values are computed and displayed as a number at the top-
left of each concern. In all 5 possible strategies, mitigation strategiendas are also the best

mitigation strategies which are especially relevant tatisworthiness attribute, where the
LoS of trustworthiness aspect in nal state®,, andGg,) is maximum. In this gure, the
LoS oftrustworthiness (root concern) is 0.06621f _sat(trustworthiness)=0.0662).

By applying a similar methodology for all remaining aspects (basiness , functional
timing etc.), we can calculate LoS values for all nine aspects in CPS Ontology.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Frame®&8rk

Fig. 5: Trustworthiness concern tree with LoS of concerns computation

Mitigation Strategy with The Best Chance to Succ&edferred mitigation strategies computed
using LoS of concern satisfaction assume that actions always succeeded. In practice, actions
might not always succeed. In this case, it is preferable to identify strategies with the best chance
of success. Assume that each actar associated with a set of statements of the form:

a successwith v if X (10)

wherev 2 [0;1] andX is a consistent set of literals 8 . This statement says that if edch X is
true in a stats anda is executable isthenv is the probability ofa's execution inssucceeds. We
assume that i occurs in two statementga‘succesawith vy if X;” and “a successwith vs if X5”
with X1 6 X, thenvy = v, or there existp 2 F such thaff p;: pg Xi[Xo. Furthermore, for

a states in which no statement associated with some actios applicable, we assume that
succeeds with probability 1 igif it is executable irs. It is easy to see that this set of statements
de nes a mappingor : A Stated [0;1] whereStatesdenotes the set of all states $f and
pr(a;s) represents the probability that the executioradfi s succeeds. Thus, the execution of

PP:&pr(a;s) wheresy = s, and fori > 0, 5 is the result of the execution af 1ins 1. This
can be used to de ne a preference relation between strategies similar to the use of LoS of con-
cern satisfaction, i.e., we prefer strategies whose probability of success is maximal. We omit the
formal de nition here for brevity.

It is worth mentioning that the speci cation by statements of the form (10) is at the action
level. It is assumed that if actiamsucceeds with a probability it means that all of its potential
effects will be achieved with the probability In some applications, it might be more proper to

24 Thanh H. Nguyen, et al.

consider a ner level of probabilistic speci cation of effects such as if acosucceeds then

probabilistic action language such as the one proposed in Baral et al. (2002) or a speci cation
using Markov decision process could be used. We will leave the discussion related to this type of
applications for the future.

4 An ASP-Based Implementation for Reasoning Tasks in CPS Theories

This section develops an ASP encoding given a CPS theory, building on the work on planning in
ASP and on formalizing CPS (e.g., Gelfond and Lifschitz (1993); Balduccini et al. (2018)). The
code is available dtttps://github.com/thanhnh-infinity/Research_CPS . We

start with the encoding of the theory (Subsection 4.1). Afterwards, we develop, for each reasoning
task, an ASP module (Subsections 4.2—-4.7) which, when added to the encoding of the domain,
will compute the answers for the task.

Throughout this section, we assume that;l) whereS = (CO;A;F;R;G is a CPS. The
encoding of(S ;1) in ASP will be denoted witP (S)", wheren is a non-negative integer
representing the horizon of the system that we are interested in. We note that the encoding of
the CPS ontology (Subsection 2.1 and 2R{W), will be automatically added to any program
developed in this section. For this reason, whenever we Rr{®)" we mearP (S)"[P(W).

4.1 ASP Encoding of a CPS Theory

The encoding of a CPS theory contains two parts, one encodes the domain and another the initial
state. We rst discuss the encoding of the domain.

4.1.1 Encoding of the Domais

P (S)" contains the following rulé$.

The set of rules declaring the time stefixeach 0 t n, an atonstep(t), i.e., the rule
step(t)

The set of rules encoding the componefaseachco2 CO, an atomcomp(co).

The set of rules encoding actiorfer eacha 2 A, an atomaction(a).

The set of rules encoding uentir eachf 2 F, an atomfluent(f).

The set of rules encoding relationgor eachco 2 CO and p 2 R(co), an atom
relation(co; p).

The set of rules encoding functional dependencfes.each(c; fu;j) 2 G an atom
formula idj , an atomaddFun c; fu;id; , and a set of atoms encodifg whereid,;
is a unique identi er associated joandc is a concern.

The rules for reasoning about actions and changes (see, e.g., Son et al. (2006))

— For each executability condition of the form (1) the rule:
exec(a;T): step (T); h (pi;T);::ih (pasT):

10 we follow the convention in logic programming and use strings starting with lower/uppercase letter to denote con-
stants/variables. In addition, this program can be generated automatically givén thapeci ed in the syntax given
in Section 3.

©CoO~NOOULDWNPE

Specifying and Reasoning about CPS through the Lens of the NIST CPS Frame®&brk

— For each dynamic causal law of the form (2):

h (f;T+1) : step (T); occurs (a;T); h (py; T);::5h (pn; T):
— For each state constraint of the form (3):

h (f;T): step (T);h (pi;T)s:h (pn;T):
— The rules encoding the inertia axiom:

h(f;T+1): step (T);h(f;T);not : h(f;T+1):

s h(f;T+1) : step (T);: h(f;T);noth (f;T+1):

whereh (x;T) stands foh(x;T) if x2 F isa uentand: h(y;T) if x=: yandy2 F.
We illustrate the ASP encoding of a CPS by presenting the encoding of the LKAS theory in

Example 2. Listing 3 shows the encoding of components, actions, and relatiSngg#vithout
the encoding of the initial state. Listing 4 shows the ASP encodin@Gfgg (see Figure 3).

Listing 3: Example prograr® (S jkas)"” for LKAS
comgsam). comgcam). compbat).

relation (cam,algo_AES). relation (cam,algo_RSA).
relation (cam,algo_DES). relation (cam,ip_filtering).
relation (cam,conn_encrypted). relation (cam,data_encrypted).
relation (cam,protocol_encrypted). relation (cam,mac_check).
relation (cam,secure_boot). relation (cam,iris_scan).
relation (cam,advanced_mode). relation (cam,basic_mode).
relation (cam,trusted_auth_device). relation (cam,trusted_environment).
relation (sam,algo_AES). relation (sam,algo_RSA).
relation (sam,algo_DES). relation (sam,mac_check).
relation (sam,conn_encrypted). relation (sam,data_encrypted).
relation (sam,ip_filtering). relation (sam,secure_boot).
relation (sam,protocol_encrypted). relation (sam,firewall_setup).
relation (sam,advanced_mode). relation (sam,basic_mode).
relation (sam,finger_printing). relation (sam,two_factors).
relation (sam.,iris_scan). relation (sam,oauth).
relation (sam,opt_code). relation (sam,email_verify).
relation (sam,ip_check). relation (sam,trusted_environment).
relation (bat,powerful_mode). relation (bat,normal_mode).
relation (bat,saving_mode). relation (bat,trusted_environment).
action (tOn(X)) :- prop(X). action (tOff(X)) :- prop (X).
exec(tOn(X),T) :- : h(X,T), prop(X), step (T).
exec(tOff(X),T) :- h(X,T), prop(X), step (T).
h(X,T+1) :- occurs (tOn(X),T), step (T).
: h(X,T+1) :- occurs (tOff(X),T), step (T).
action (patch (X)):- prop (X).
exec(patch (X),T):- prop(X), availablePatch (X), : h(X,T), step (T).
h(X,T+1) - occurs (patch (X),T), step (T).
action (switM(cam,basic_mode)). action (switM(cam,advanced_mode)).
action (switM(sam,basic_mode)). action (switM(sam,advanced_mode)).
action (switM(bat,saving_mode)). action (switM(bat,normal_mode)).
action (switM(bat,powerful_mode)).
exec(switM(X,basic_mode),T) :- relation (X,basic_mode),
not h(active (X,basic_mode),T), comgX), h(basic_mode,T), step (T).
h(active (X,basic_mode),T+1) :- occurs (switM(X,basic_mode),T), step (T).

. h(active (X,advanced_mode),T+1) :- occurs (switM(X,basic_mode),T),

39
40
41
42

43

44

©Coo~NOUDWNE

26 Thanh H. Nguyen, et al.

h(active (X,advanced_mode),T), step (T).

exec(switM(X,advanced_mode),T) :- compgX), relation (X,advanced_mode),
not h(active (X,advanced_mode),T), h(advanced_mode,T), step (T).

h(active (X,advanced_mode),T+1) :- occurs (switM(X,advanced_mode),T),
step (T).

: h(active (X,basic_mode),T+1):- step (T), h(active (X,basic_mode),T),
occurs (switM(X,advanced_mode),T).

In Listing 3, Line 1 encodes the components; Lines 2-20 encode the relations; Lines 22—-29
encode the action®n andtOff . The remaining lines of code encode other actions in similar
fashion.

Eachformulaj related to a conceris associated with a unique identi ¢ and is converted
into a CNFj 1~ :::/ jk, eachj i will be associated with a unique identi gr!. The set of
identi ers are declared using the predicédemula/1 . It will be declared aslisjunction or
conjunction . Furthermore, set notation is used to encode a disjunction or conjunction, i.e., the
predicatemember(X,G) states that the formul2¢is a member of a disjunction or a conjunction
G. The predicatéunc(F,C) states thaF is the functional decomposition of conceZn

Listing 4: A part of ASP programP (S kas)” encoding Guas for Integrity and
Authorization concerns

formula (0..3).

concern (integrity).
conjunction (0). addConcern(integrity,0).

membefsecure_boot,0). membefenergy_func,0).
membefoperation_func,0).

func (operation_func,integrity). func (energy_func,integrity).
disjunction (operation_func). formula (operation_func).

membefadvanced_mode,operation_func).

membegbasic_mode,operation_func).

disjunction (energy_func). formula (energy_func).
membefpowerful_mode,energy_func). membegnormal_mode,energy_func).
membefsaving_mode,energy_func).

concern (authorization).
conjunction (1). addConcern(authorization,1).
membeftrusted_auth_device,1).
membeftrusted_environment,1).
membegsign_in_func,1).

func (sign_in_func,authorization).
disjunction (sign_in_func).
formula (sign_in_func).
membeffinger_printing,sign_in_func).
membefiris_scan,sign_in_func).
membeftwo_factors,sign_in_func).

membef2,sign_in_func). membef3,sign_in_func).
conjunction (2).

membefoauth,2). membefopt_code,2).
conjunction (3).

membefoauth,3). membefip_check,3). membegemail_verify,3).

O©oO~NOOOD WNPE

Specifying and Reasoning about CPS through the Lens of the NIST CPS Frame®drk

In Listing 4, the rst line uses a special syntax, a short hand, declaring four

atoms formula(0) ,:::formula(3) . The declaration and encoding of thategrity

concern and its related formulas, properties and decomposition functions are presented

in Lines 3-13. In which, line 3 declares the concemtegrity . Lines 4-6 en-
code the conjunctive formulacgnjunction(0)) that addresses théntegrity con-
cern and its membership (e.g., the propedgcure boot and the two decomposi-
tion functions of the Integrity concern). Line 7 species the two functional de-
pendencies of theantegrity concern which areoperation _func and energy _func .
Lines 8-13 specify how the formulae address the functional decompositions. Lines
10 declare the disjunctive formulaperation _func and dene the membership be-
tween properties and this formula (e.gnember(advanced _mode,operation _func) ,
member(basic _mode,operation _func) says thatdvanced _-mode andbasic _modeare ele-
ments of the disjunctiooperation _func). Similar encoding is applied for disjunctive formulae
energy _func in Lines 11-13. Lines 15-30 encode information related toAtlthorization
concern.

4.1.2 Encoding of the Initial State

The encoding of the initial stateof a CPS theoryS ;1), denoted byP (1), contains, for each
uent f, h(f;0) if f is true inl or: h(f;0) if f is false inl. Listing 5 shows a snippet of

the initial state ofS ka5 With Lines 1-7 specifying the true/false properties and Lines 9-17 the
speci c information about which components operate in which properties in LKAS in the initial

state.
Listing 5: An example for a part of initial con guration &t (I xas)

h(finger_printing,0). h(oauth,0). h(ip_check,0).

h(two_factors,0). h(opt_code,0).

h(trusted_auth_device,0). h(trusted_environment,0). h(secure_boot,0).
h(powerful_mode,0). h(saving_mode,0). h(normal_mode,0).
h(basic_mode,0). h(advanced_mode,0).

. h(iris_scan,0). : h(email_verify,0). . h(firewall_setup,0).

h(active (sam,secure_boot),0). h(active (sam,algo_RSA),0).

h(active (sam,basic_mode),0). h(active (sam,data_encrypted),0).

h(active (sam,firewall_setup),0). h(active (sam,finger_printing),0).

h(active (sam,trusted_environment),0).

h(active (cam,ip_filtering),0). h(active (cam,data_encrypted),0).

h(active (cam,conn_encrypted),0). h(active (cam,secure_boot),0).

h(active (cam,trusted_auth_device),0). h(active (cam,basic_mode),0).
h(active (bat,powerful_mode),0). h(active (bat,trusted_environment),0).

The following property (see, Son et al. (2006)) will be important for our discussion. It shows

thatP (S)" correctly computes the functidhg .

Proposition 3

O WNBE

[ec BN

10

11

28 Thanh H. Nguyen, et al.

Letsbe a state irS . LetP = P(S)1[f h (f;0)j f 2 sg. Assume thah is an action that is
executable irs. Then,s°2 F s (a;s) iff there exists an answer s8tof P [f occurg(a; 0)g such
thatfh (f;1)jf2sy A

It is worth mentioning thalP (S)" allows us to reason about effects of actions in the following

0;:::;n 1g has an answer s&if and only if (i) ag is executable in the state (ii) for each
i > 0, g is executable after the execution of the sequdage::;a 1]; (iii) for eachi, the set
ffjf2Fh(f;i)2[f: fjf2F: h(f;i)2 gisastate o .

4.2 Computing Satisfaction of Concerns

We will next present a set of ASP rules for reasoning about the satisfaction of concerns as spec-
i ed in De nitions 3—4. Since a concern is satis ed dll of its functional decompositions and
properties are satis ed, we de ne rules for computing the predibdtat (O ; T) which states

that conceriC is satis ed at the stefs. The rules are given in Listing 6.

Listing 6: P g5 : Concern Satisfaction Reasoningwh

formula (: G) :- formula (G).

prop(: G) - prop(G).

h(: F,T):- step (T), 1{ formula (F); prop(F)}, : h(F,T).

h(F,T) :- step (T), formula (F), disjunction (F), membefG,F), h(G,T).

: h(F,T):- step (T), formula (F), disjunction (F), not h(FT).

:h(F,T):- step (T), 1{ formula (G); prop(G)}, formula (F), conjunction (F),
membefG,F), not h(G,T).

h(F,T) :- step (T), formula (F), conjunction (F), not : h(F,T).

: h(sat(C),T) :- concern(C), addConcern(C,F), not h(FT), step (T).

: h(sat(X),T) :- subCdX,Y), not h(sat(Y),T), concern(X), concern(Y),
step (T).

: h(sat(X),T) :- subCdX,Y), : h(sat(Y),T), concern(X), concern(Y),
step (T).

h(sat(C),T) :- not : h(sat(C),T), concern(C), step(T).

The rst two lines declare that the negation of a formula or a property is also a formula and
thus can be a member of a disjunction or conjunction. The rule on Line 3 sayis(th&tT) is
true if the negation of is true. This rule uses a special synidformula(F);prop(F) gwhich
says that there exists at least ¢his both a formula and a property. The rule on Line 4 states that
h(F;T) is true if F is a disjunction and one of its disjuncts is true. The next rule (Line 5) states
that: h(F;T) for a disjunctiorF is true if it cannot be proven thé&tis true. This rule applies the
well-known negation-as-failure operator in establishing the truth valuehdf; T). Similarly,
the next two rules establish the truth value of a conjunckone., h(F,T) is true if none of
its conjuncts is false. The remaining rules are used to establish the truth vdi(sanf(C) ; T),
the satisfaction of concer@ at stepT. Line 8 states that if the formula addressing the concern
C cannot be proven to be true then the concern is not satis ed. Rules in line 9-10 propagate
the unsatisfaction of a concern from its subconcerns. Finally, a concern is satis ed if it cannot
be proven to be unsatis ed (Line 11). We can prove the following proposition that relates the
implementation and De nition 3.

Proposition 4(Concern Satisfactign
For a CPS theorfp= ('S ;1) and a concer, c is satis ed (or unsatis ed) irl if h(sat(c);0)
(or: h(sat(c);0)) belongs to every answer set®fD), whereP (D)= P (S)°[P()[Psat

~NOoO O WN

10

11

12

13
14
15
16

Specifying and Reasoning about CPS through the Lens of the NIST CPS Frame®&8rk

Proof

Itis easy to see that for any formylaover the uentsinS , the encoding and the rules encoding
a formula, and the rules in Lines 147 L (c) iff h(sat(L(c)');0) belongs to every answer set
of P(D) whereL (c)' is the identi er associated to the formulg(c). Lines 9-10 show that i¢
has a sub-concern that is not satis ed then it is not satis ed and hence Rule 11 cannot be applied.
As such, we have thd(sat(c);0) is in an answer set & (D) iff the formulaL (c) is true and all
sub-concerns of are satis ed in that answer set iffis satis ed inl. [

Since we will be working with the satisfaction of concerns in the following sections, we will
therefore need to includRsz in P (S)". From now on, whenever we referi®(S)", we mean
P(S)"[P(D[Psat

4.3 Computing Most/Least Trustworthy Components

Proposition 1 shows thats has min/maximal elements, i.e., least/most trustworthy components
of a system always exist. The progr&mn,: (S) for computing these components is listed below.

Listing 7: P it Computing Most/Least Trustworthy Components

r(X,P,C,T) :- comgX), prop(P), concern(C), step(T), h(active (X,P),T),
h(P,T), addByC,P).

pos(X,P,C,T) :- r (X,P,C,T), positivelmpact (P,C), h(sat(C),T), step (T).

nPos(X,P,C,T):- r (X,P,C,T), not positivelmpact (P,C), step(T).

nPos(X,P,C,T):- r (X,P,C,T), not h(sat(C),T), step (T).

pos(X,P,C,T) :- pos(X,P,C 1,T), subCqC,C i), step(T).

nPos(X,P,C,T):- nPos(X,P,C 1,T), subCdC,C;), step(T).

twep (X, TW,T) :- TW= #count {C,P: pos(X,P,C,T), prop(P), concern(C)},
compX), step (T).

twen(X,TW,T) :- TW= #count {C,P: nPos(X,P,C,T), prop(P), concern(C)},
compX), step (T).

higher (X 1,X5,T) :- twep (X1, TWpL1,T), twcp(X2,TWp2,T), twcn(X1,TWn1,T),
twen(X 2, TWn2,T), di=TWp1/(TWnl + 1), d=TWp2/(TWn2 + 1), di > dby,
step (T), TWpl!=0, TWp2!=0.

higher (X 1,X 2,T):- step (T), twcp(X1,0,T), twep (X 2,0,T), twen (X 1,TWn1,T),
twen(X 2, TWn2,T), TWnl1 < TwWn2.

equal (X1,X2,T) - twep(X1,TWpLT), twep(X2,TWp2,T), twcn(X1,TWnN1,T),
twen(X 2, TWn2,T), d;=TWpl/(TWnl + 1), d=TWp2/(TWn2 + 1), d; = dy,
step (T), TWp1!=0, TWp2!=0.

equal (X1,X2,T) :- step (T), twcp(X1,0,T), twep (X 2,0,T), twen(X 1,TWn1,T),
twen (X 2, TWn2,T), TWn1=TWn2.

not _highestTW(X,,T) :- comXj), comfXy), higher (X1,X2,T), step(T).

not _lowestTW(X 1,T) - comfXi), comgXy), higher (X1,X2,T), step(T).
most(X,T) :- comgX), not not _highestTW(X,T), step (T).

least (X,T) :- comgX), not not _lowestTW(X,T), step(T).

In Listing 7, addBy(C,P) and positivelmpact(P,C) are de ned in the progran® (W)
(Subsection 2.4)addBy(C,P) is true means that a properfy addresses a concel@.
positivelmpact(P,C) is true means that the satisfaction of propdetympacts positively

on the satisfaction of concef@. The predicate(X,P,C,T) (Line 1) encodes the relation-
ship betweerX, P andC at the timeT which says that the componekt is working with

the propertyP at time T and P addresses concef. The second rule (Line 2) de nes the
predicatepos(X,P,C,T) that encodes the positive affected relationship between component
X and concerrC at time stepl through propertyP which is true if the concerg is satis ed

30 Thanh H. Nguyen, et al.

andpositivelmpact(P,C) andr(X,P,C,T) hold. Lines 3—4 de nePos(X,P,C,T) , which
holds at timeT if r(X,P,C,T) holds but eithepositivelmpact(P,C) is not de ned inW
or concernC is not satis ed. This element is used for the computation of the denominator of
Equation (6). The rest of the listing de nes the relationshigher between components en-
coding the 1 whereT represents the state at the timef the system and identifying the most
and least trustworthy components. Lines 5-6 propagatedbitive affecte@ndimpactrelations
(pos/4 , nPos/4) of a concern from its subconcermaic p(x;tw;t) (resptwen(x;tw;t)) encodes
the number of concerns positively affected (resp. impacted) by comprréstept. The atom
#eountf GP: pos(X CP;T); prop (P);concern (Qgis an aggregate atom in ASP and encodes
the cardinality of the set of all concerns positively impactedPtandX.

We can show that the following proposition holds.

Proposition 5

For a CPS theonD = (S ;1) and an answer se&® of programP (S)"[P(I)[P, if
most(x;t) 2 S(resp.least(x;t) 2 S) thenx is a most (resp. least) trustworthy component in the
states.

The proof follows immediately from the de nition of the predicagd By positivelmpactand
the de nition of aggregate functions in ASP. As such, to identify the most trustworthy component
of S , we only need to compute an answerSef P (S)"[P (1)[Pmi and use Proposition 5.

Example 6
Consider theS | s domain.

Let us consider the initial con guratiol]}(as of LKAS system where every properties are ob-
served to be true. FdDkas= S ikas Iﬁ(as , we can easily see that (from Figure 2) the atoms:
pos(canm advancedmodeintegrity, 0), pos(cam secureboot, cybersecurity0), etc. belong to
every answer set oP (Dias) = P (Sika9)" [P Il}(as [P'nﬁﬁs. Similar atoms are present to
record the number of concerns affected by different properties. Furthertnamg(cam 28;0),
twen(cam 6;0), twep(sam 40; 0), twen(sam0; 0), twep(bat; 6; 0) andtwen(bat; 5;0) belong to
any answer set d? (S jkas)"[P Ikas [PIX&S: SAMis the most trustworthy componeBAT

is the least trustworthy components at step 0.

Now, let us considerﬁ(as of LKAS system (Figure 2) where there are two properties that are ob-

served to bd-alse Firewall-Setup andTrusted-Auth-Device .ForDkas= Sikas I,ias ,
the computation of the program (S ka9)" [P Iﬁ(as [P'rﬁﬁs shows us:twcp(cam 22;0),

twen(cam 6; 0), twep(sam 22;0), twen(sam 12; 0), twe p(bat; 0; 0) andtwen(bat; 11; 0) belong
to any answer set & (S jkas)"[P 12,5 [PIX&S. In this situationCAM is the most trustworthy

componentBAT is the least trustworthy components at step 0.

We conclude this part with a brief discussion on possible de nitions oThe proposed de -
nition assumes everything being equal (e.g. all concerns and properties are equally important, the
roles of every components in a CPS system are equal, etc.). In practice, the ordenigbt be
qualitative and user-dependent, e.g., an user might prefer con dentiality over integdan be
de ned over a qualitative ordering and implemented in ASP in a similar fashion that preferences
have been implemented (e.g., Gelfond and Son (1998)).

N -

OO WNBE

Specifying and Reasoning about CPS through the Lens of the NIST CPS Frame®brk

4.4 Computing Mitigation Strategies

The progranP (S)"[Psatcan be for computing a mitigation strategy by adding the rules shown
in Listing 8:

Listing 8: P,,,: Generating Plan

1{ occurs (A, T): action (A)}1 :- step (T), T<n.

- occurs (AT), not exec (AT).

- not h(sat(c), n).
The rst rule containing the atorif occurs (A T) : action (A)gl — a choice atom — is intu-
itively used to generate the action occurrences and says that at any, g®pctly one action

must occur. The second rule states that an action can only occur if it is executable. The last
rule helps enforce thdi(sat(c);n) must be true in the last state, at stepFor a set of con-
cernsS, letP" . [S] be the program obtained froR" . by replacing its last rule with the set

plan plan
f: not h(sat(c);n):jc2 Sg. Based on the results in answer set planning, we can show:

Proposition 6
tion strategy forS iff P (D) [P’r‘ﬂan [S] has an answer s&such thabbccurqg;;i) 2 Sfor every
i=0;::5n 1.

The proof of this proposition relies on the properties”dD) discussed in previous section and

the set of constraints iR}, [S].

4.5 Non-compliance Detection in CPS Systems

The progranP (S)"[Psa can be used in non-compliance detection by adding the rules shown
in Listing 9:
Listing 9: P"(SA SO: Non-compliance Detection

1{ occurs (A, T): sa_action (A)}1 :- step (T), T<n, not conflict (T).
- occurs (AT), not exec (A,T), step (T).

1{ h(F,0); : h(F,0)}1 :- fluent (F).

conflict (T) - sc_concern(C), : h(sat(C),T), step (T).

conflict (T+1) :- conflict (T), step(T).

- not conflict (n).
The rst two rules are similar to the rules for the planning program, with the exception that the
action selection focuses on the actions in theSgetThe third rule generates an arbitrary initial
state. The rules 4-5 state that if some concei®@is not satis ed at timél then a con ict arises
and the constraint on the last rule says that we would like to create a con ict at.step
We assume that actions 8Aare speci ed by atoms of the forsa action(a) and concerns
in SCare speci ed by atoms of the forsc.concerr(c). It is easy to see that an answer Seif
P (S)"[Psat[P"(SA SO represents a situation in which the system will eventually not satisfy

and, fors> t, there exists noccurdqag; s) 2 S, is executed in the initial state (the $dtj h(f;0) 2

S f2Fg[f: fj: h(f;0)2S f2Fg)thensome concern BCwill not be satis ed aften steps.

In other words, to check wheth& is weaklyn-noncompliant, we only need to check whether
pn= P (S)"[Psal P"(SA SO as an answer set of not. The proof of this property relies on
the de nition of an answer set for a program with constraints, which say that the constraint

W

© oo ~NO U

10

11

12

32 Thanh H. Nguyen, et al.

not conflict(n). must be false in the answer set, which in turn implies toaflict(n)
must be true.

If S is weakly n-noncompliant, we can do one more check to see whether it is strongly
n-complaint as follows. Letp be a program obtained fromp, by replacing * not

conflict(n) " with “:- conflict(n). ” We can show that ip? has no answer set then for
every initial state ofS no action sequence is executable or there exists some action sequence
such thatconflict(n). is true. Combining with the fact th& is weakly n-noncompliant,

this implies that the domain is stronglynoncompliant. Again, the proof of this property relies

on the de nition of answer sets of programs with constraints, which say that the constraint
conflict(n). must be false in an answer set, which in turn implies thaflict(n) must

be false. However, the program having no answer set implies that every executable sequence of
actions will generateonflict(n)

4.6 Likelihood of Concerns Satisfaction and Preferred Mitigation Strategies

In this subsection, we present an ASP program for computing LoS of concerns and preferred mit-
igation strategies using LoS. Listing 10 shows the ASP encoding for computing of LoS of con-
cerns. It de nes the predicatié _sat(C,N,T) which states that the likelihood of satisfaction of
concerrC at time steprl is N. It starts with the de nition of different predicateg\llPosCon/3
andnActPosCon/3 representingel® (c) andrell;(c;s) at the steprl, i.e., the number of all
possible positively impacting properties on conc€rand the number of positively impacting
properties on concer@ holding in stepr, respectively. Recall thaiositivelmpact(P,C) is

de ned as in Subsection 4.3. Line 5 creates an ordering between subconcerns of éfmern

the computation ofh _sat(C,N,T) . The LoS for a concern without a subconcern is computed

in Line 8. Rules on the lines 9-12 compute the LoS of concerns in accordance with the order
created by rule on Line 1h _sat(C,N,T) is then computed using Equation 8.

Listing 10: P os Computing Likelihood of Concerns Satisfaction

nAllPosCon(C,N2,T):- concern(C), step(T), N2= #count {P,Com : comgCom),
prop(P), positivelmpact (P,C), addBy(C,P), relation (Com,P)}.
nActPosCon(C,N1,T):- concern(C), step(T), N1= #count {P,Com : comgCom),

prop(P), positivelmpact (P,C), addBy(C,P), relation (Com,P),
h(active (Com,P),T)}.

deg_pos(C,1,T) - step (T), concern(C), nAllPosCon(C,0,T).

deg_pos(C,N1 »100/N2,T) :- nAllPosCon(C,N2,T), nActPosConC,N1,T),
concern(C), N2!=0.

order (SC,C,N) :- subCdC,SC), N={SC < SCp : subCqC,SCp)}.

hSubCq¢C) :- subCqC,SC), concern(C), concern(SC).

: hSubCd¢C):- concern(C), not hSubCdC).

Ilh _sat _sub(C,1,T) :- step (T), concern(C), : hSubCdC).

Ilh _sat (C,N1 *N2,T) :- step(T), concern(C), Ilh _sat_sub(C,N1,T),
deg_pos(C,N2,T).

Ilh _sat _sub_aux(C,0,X,T) :- step (T), subCdC,SC), order (SC,C,0),
Ilh _sat (SC,X,T).

Ilh _sat _sub_aux(C,N,X *Y,T) :- step(T), subCdC,SC), order (SC,C,N),
Ilh _sat (SC,Y,T), Ilh _sat _sub_aux(C,N-1,X,T).

Ilh _sat _sub(C,X,T) :- Ilh _sat _sub_aux(C,N,X,T), step (T), concern(C),

not Ilh _sat _sub_aux(C,N+1,_,T).

Specifying and Reasoning about CPS through the Lens of the NIST CPS Frame®8rk

It is easy to check that the above program correctly computes the valubsidfc;s) and
j Los(c;9). Indeed, the program® (Dikas) = P (Sikas)" [P (likas) [Plias[Psatl P?ﬂan[PLos
correctly computes the LoS of concerns for various concerns as shown in Subsection 3.3.3 (Fig-
ure 5).

Having computed LoS of concerns ang,s, identifying the best strategies in according to the
two approaches in Subsection 3.3.3 is simple. We only need to add rules that aggregates the LoS
of the top-level concerns speci ed in the CPS with their corresponding weights or preferences.
This is done as follows:

Weighted LoSListing 11 computes the weighted LoS of the nal state. The rule is self-
explanatory.

Listing 11: Computing Weighted LoS

1 scoreLoS(Sc,T) :- Ilh _sat (functionality,V funT), wLOS
functionality, W fun), Ilh _sat (business,V pusT), wLoSbusinessW s
), llh _sat (human,V pymT), wLoShuman Wy, Ilh _sat(
trustworthiness,V tru,T), wLoStrustworthiness,W tru), Ilh _sat(

timing,V tim,T), wLo&timing, W +m), Ilh _sat(data,V 4a.T), wL0o§
data,W 44), Ilh _sat (boundaries,V pouT), wLoSboundariesW pou),
Ilh _sat (composition,V ¢comT), WwLoScomposition W com), Ilh _sat(

lifestyle,V if,T), wLoSlifestyle, W if), SC = V fun*Wun + Voug Wus
+ Vhunt* Waum + Vio* Wru + Viim* Wim + Vdat* Wiat + Voot Wou *+ Veont* Wom +
Vit * Wit .

Specied Preferences LoSASP solver provides a convenient way for computing
preferences based on lexicographic order among elements of a set. Assume that
Trustworthiness is preferred tBusiness then the two statements

#maximize fVi@k : Ilh _sat(trustworthiness, Vi, n) g

#maximize f\VL@k": Ilh _sat(business, Vo, n) g
with k> k%andn is the length of the plan will return answer sets in the lexicographic
order, preferring the concemustworthiness overBusiness . With these statements,
any speci ed preferred LoS over the set of top-level concern can be implemented easily.

4.7 Computing Mitigation Strategy with The Best Chance to Succeed

To compute strategies with the maximal probability of success, we only need to extend the pro-

gramP,,, with the following rules:

for each statement” successwith v if pi;:::;pn”, the two rules:
pr(av;T) : h (pi;T);::5h (pnsT):
dpr(aT) : h (pi;T);ish (PasT):
which check for the satisfaction of the condition in a statement de ning the probability of
success in the stép and states that it is de ned.
the rule:
pr (AL1;T) : exec(AT);notdpr (AT):
which says that by default, the probability of succesa af stepT is 1.
computing the probability of the state at STEp
prob (1;0):
prob (U V;T+1) : prob (UT);occurs (AT);pr (AV.T):
where the rst rule says that the probability of the state at the time 0 Bdb(v;t) states

34 Thanh H. Nguyen, et al.

that the probability of reaching the state at the stisyy and is computed using the second
rule.

Let P fegiprsPeP jan @and the above rules. We have thaeid;:::;a, 1] andSis an answer set of
the best strategy, we add the rule

#maximizef V: prob (V;n)g:
to the progranPy p.s

Example 7

Continue with Example 2 after a cyber-attack occurs and causes the prbpsittynode to
be False As in Section 4.4, the ve mitigation strategieai{as;as;as andas) are gener-
ated to restore the LKAS system. Assume that the probability of succé€m@basic _mode,
switM (camadvanced. mod@, andswitM (samadvanced modé are 0.2, 0.6, 0.7 in every state,
respectively. In this case, the strategiesandas have the maximal probability to succeed.

5 Towards a Decision-Support System for CPSF

As a demonstration of the potential use of our approach, in this section we give a brief overview
of a decision-support system (version 0.1) that is being built for use by CPS designers, managers
and operators. We also include preliminary considerations on performance aspects.

Fig. 6: Computing Satisfaction of Concerns in Reasoning Component

The decision-support system relies on an ASP-based implementation for reasoning tasks in
CPS theories (described in Section 4) with the different modules for answering queries described
in Section 3.3, and compriseg@asoning componerand avisualization componenEigure 6
shows thereasoning componerdt work on computing satisfaction of concerns related to the
LKAS domain example (described in Section 4.2). Figure 7 illustrates the reasoning component
at work on other modules (Section 4.3— 4.7) with different situations related to the LKAS domain.
Notice how the user can ask the system to reason about satisfaction of concerns, to produce
mitigation plans as well as to select the most preferred mitigation strategy, etc.

The output of the reasoning component can then be fed taishalization componenivhere
advanced visualization techniques allow practitioners to get a birds-eye view of the CPS or dive

	Introduction
	Background
	NIST CPS Framework and the CPS Ontology
	Answer Set Programming
	Action Language B
	Representation and Reasoning with CPS Ontology in ASP

	CPS Theory Specification
	Formal Definition
	The Semantics of CPS Theories
	Reasoning Tasks in CPS

	An ASP-Based Implementation for Reasoning Tasks in CPS Theories
	ASP Encoding of a CPS Theory
	Computing Satisfaction of Concerns
	Computing Most/Least Trustworthy Components
	Computing Mitigation Strategies
	Non-compliance Detection in CPS Systems
	Likelihood of Concerns Satisfaction and Preferred Mitigation Strategies
	Computing Mitigation Strategy with The Best Chance to Succeed

	Towards a Decision-Support System for CPSF
	Related Work
	Conclusions and Future Work
	References

