
TPLP: Page 1–8. © The Author(s), 2021. Published by Cambridge University Press 2021

doi:10.1017/xxxxx
1

Specifying and Reasoning about CPS through the Lens
of the NIST CPS Framework

THANH HAI NGUYEN, MATTHEW BUNDAS, TRAN CAO SON
Department of Computer Science, New Mexico State University, Las Cruces, USA
(e-mail: thanhnh@nmsu.edu,bundasma@nmsu.edu,stran@nmsu.edu)

MARCELLO BALDUCCINI, KATHLEEN CAMPBELL GARWOOD
Saint Joseph’s University, Philadelphia, USA

(e-mail: mbalducc@sju.edu,kcampbel@sju.edu)

EDWARD R. GRIFFOR
National Institute of Standards and Technologies, USA

(e-mail: edward.griffor@nist.gov)

submitted 04-Jun-2021; revised 24-Oct-2021; accepted 21-Jan-2022

Abstract

This paper introduces a formal definition of a Cyber-Physical System (CPS) in the spirit of the CPS Frame-
work proposed by the National Institute of Standards and Technology (NIST). It shows that using this def-
inition, various problems related to concerns in a CPS can be precisely formalized and implemented using
Answer Set Programming (ASP). These include problems related to the dependency or conflicts between
concerns, how to mitigate an issue, and what the most suitable mitigation strategy for a given issue would
be. It then shows how ASP can be used to develop an implementation that addresses the aforementioned
problems. The paper concludes with a discussion of the potentials of the proposed methodologies.

KEYWORDS: Artificial Intelligence, Knowledge Representation, Automated Reasoning and Planning,
Cyber-Physical System, Answer Set Programming, Concern Satisfaction, CPS Ontology

1 Introduction

The utility (potable water, wastewater) distribution systems, the electric power grid, the trans-
portation network, automated driving systems (ADS), hospital robots, and smart-home systems
are a few examples of cyber-physical systems (CPS)1 that are (or soon to be) a part of our daily
life. Before any CPS is deployed into the real-world, several concerns need to be investigated
and addressed, e.g., why should someone trust that the CPS will perform its functions safely,
securely and reliably? How will such a system respond to a certain critical conditions and will
that response be acceptable? In other words, evidence must be gathered and argued to be suffi-
cient to conclude that critical properties of a CPS have been assured before its deployment. For
financial and practical reasons, the validation and verification of a CPS should be done as early
as possible, starting with its design. CPS are complex systems that evolve with use, requiring a
principled methodology and tools for developing an assurance case before release to the market.

1 For brevity, we use CPS to stand for both the plural and the singular cyber-physical system.

mailto:thanhnh@nmsu.edu,bundasma@nmsu.edu,stran@nmsu.edu
mailto:mbalducc@sju.edu,kcampbel@sju.edu
mailto:edward.griffor@nist.gov

2 Thanh H. Nguyen, et al.

Such a methodology and the tools for applying it are two key contributions of this paper. We
present here a formalization of a CPS with a clearly defined semantics that enables the assess-
ment of critical system properties. The need for such a foundation for assurance can be seen in
the next example.

Example 1
Suppose that we would like to develop an Automated Driving System (ADS). We have two
constraints that we would like to enforce: (a) packets sent from the wind-sensor, a part of the
situational awareness module (SAM), to the main processor must be fast and reliable; (b) all
communication channel must be encrypted. We will refer to (a) and (b) as an Integrity concern
and Encryption concern, respectively.

Consider a situation in which the ADS has only one possible communication channel, which is
fast, reliable when encryption is disabled, but is not when encryption is enabled. In this situation,
the two constraints are in conflict with each other. It is impossible to satisfy both of them.

Assume that we also have some preference, called Verification, which is related to the
verification of received data. Encrypted data would have been preferred to non-encrypted one.
If the wind-sensor uses the non-encrypted socket communication, it can satisfy (or positively
affect) the Integrity concern but it does not satisfy (or negatively affect) the Verification
preference.

In this paper, we view a CPS as a dynamic system that consists of several components with
various constraints and preferences which will be referred as concerns hereafter. Given a concrete
state of the system, a concern might or might not be satisfied. We aim at laying the mathematical
foundation for the study of CPS’ concerns. This foundation must allow CPS developers and
practitioners to represent and reason about the concerns and answer questions such as (i) will a
certain concern or a set of concerns be satisfied? (ii) is there any potential conflict between the
concerns? and (iii) how can we generate the best plan that addresses an issue raised by the lack
of satisfaction of a concern? Readers familiar with research in representing and reasoning about
dynamic systems might wonder whether well-known formalisms for representing and reasoning
about dynamic systems such as automata, action languages, Markov decision process, etc. could
be used for this purpose. Indeed, our proposed framework extends these formalisms by adding a
layer for modeling the components and concerns in CPS.

To achieve our goal, we propose a formalism for representing and reasoning about concerns
of CPS. We will focus on the properties described in the CPS Framework (CPSF) proposed by
the CPS Public Working Group (CPS PWG) organized by the National Institute of Standards and
Technology (NIST) Griffor et al. (2017a;b); Wollman et al. (2017). This framework defines sev-
eral important concepts related to CPS such as facets (modes of the system engineering process:
conceptualization, realization and assurance), concerns (areas of concern), and aspects (clusters
of concerns: functional, business, human, trustworthiness, timing, data, composition, boundaries,
and lifecycle). These concepts are organized in an ontology which is easily extensible and allows
us to better manage development and implementation within, and across, multiple application
domains. We formally propose the notion of a CPS system that (i) considers constraints among
concerns; (ii) enables the automatic identification of conflicts between concerns; and (iii) en-
ables the application of planning techniques in computing mitigation strategies. Building and
establishing upon CPSF are important properties of our research, which distinguish it from much
of the work done on CPS so far. While most of the prior research is focused on a specific class of
CPS or of aspects, e.g., CPS for smart grids or concerns related to cybersecurity Uluagac et al.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 3

(2019), the methodology we provide is intentionally domain-independent and applicable to any
class of CPS.

The paper is organized as follows. Section 2 presents a brief overview of the CPS frame-
work, answer set programming, action language, and reasoning with ontologies using answer set
programming. Section 3 contains the main contribution of the paper, a formalization of a CPS
theory, which includes a specification of CPS domain and the semantics defining when a concern
is satisfied. It also formally defines several reasoning tasks related to the satisfaction of concerns
such as (i) when is a concern satisfied; (ii) what are the most/least trustworthy components of a
CPS system; (iii) is the CPS system compliant; (iv) computing a mitigation strategy for a system
when some concerns become unsatisfied; (v) which mitigation strategy has the best chance to
succeed. Section 4 provides an answer set programming implementation of the tasks. The paper
concludes with the discussion of the related work. The paper is arranged in a way such that it
can be of interest to different groups of readers. Specifically, it separates the formal definitions
of a CPS, and the reasoning tasks associated with it, from a concrete implementation of the rea-
soning tasks. As such, a reader only interested in the formal theories would likely be interested
in Section 3. On the other hand, the code in Section 4 would be of interest to readers who would
like to experiment with their own CPS.

2 Background

This section reviews the background notions that will be used in the paper, including the CPS
ontology, answer set programming, and the use of logic programming in ontology reasoning.

2.1 NIST CPS Framework and the CPS Ontology

One of the major challenges in designing, maintaining and operating CPS is the diversity of areas
of expertise involved in these tasks, and in the structure of the CPS itself. For example, develop-
ing a “smart ship” Moschopoulos (2001) involves close interaction among, and cooperation of,
experts in disciplines ranging from cybersecurity to air conditioning systems and from propul-
sion to navigation. As demonstrated by, e.g., NASA’s Mars Climate Orbiter2, ensuring a shared
understanding of a CPS and the interoperability of its components is an essential step towards its
success – a goal that is made even more elusive by the fact that the areas of knowledge relevant
to a CPS vary greatly depending to the type of CPS considered.

For this purpose, NIST recently hosted a Public Working Group on CPS with the aim of
capturing input from those involved in CPS to define a CPS reference framework supporting
common definitions and facilitating interoperability between such systems, regardless of the type
of CPS considered. A key outcome of that work was the CPS Framework (Release 1.0, published
as three separate NIST Special Publications Griffor et al. (2017a;b); Wollman et al. (2017)),
which proposes a means of describing three facets during the life of a CPS: conceptualization,
realization, and assurance of CPS; and to facilitate these descriptions through analytical lenses,
called aspects, which group common concerns addressed by the builders and operators of the
CPS. The CPS Framework articulates the artifacts of a CPS in a precise way, including the
concerns that motivate important requirements to be considered in conceptualizing, realizing

2 https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

4 Thanh H. Nguyen, et al.

(including operating), and assuring CPS. Albeit helpful, being a reference framework the CPS
Framework only helps with the speci�cation of a CPS and the discussion among experts. It does
not, by itself, reduce the amount of work necessary to analyze the CPS and its evolution of the
CPS lifecycle.

This realization gave impulse to the investigation that ultimately resulted in theCPS Ontology
Balduccini et al. (2018); Nguyen et al. (2020a), which provides a CPS analysis methodology
based on theCPS Frameworkfeaturing a vocabulary that describes and supports the understand-
ing and development of new and existing CPS, including those designed to interact with other
CPS and function in multiple interconnected infrastructure environments.

Fig. 1: NIST CPS Ontology

At the core of the CPS Framework and of the CPS Ontology are the notions of domains,
facets (conceptualization, realization and assurance), aspects and concerns, and a cyber-physical
functional decomposition. The product of the conceptualization facet is a model of the CPS
(requirements added to address prioritized concerns), the product of the realization facet is a CPS
satisfying the model and the product of the assurance facet is assurance case for the prioritized
set of concerns.Domainsrepresent the different application areas of CPS such as automated
driving systems, electrical grid, etc.Concernsare characteristics of a system that one or more
of its stakeholders are concerned about. They are addressed throughout the lifecycle of a CPS,
including development, maintenance, operation and disposal.Requirementsare assertions about

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework5

the state variables of a CPS aimed at addressing the concerns. The reader should note that, in
line with the current CPSF speci�cation, we consider the termproperty to be a synonym of
requirement, and we use the two terms interchangeably in the rest of this paper.Artifactsare the
elements of products of the facets for a CPS and include requirements, design elements, tests, and
judgments.Aspectsare the ten high-level concerns of the CPS Framework: functional, business,
human, trustworthiness, timing, data, communication, boundaries, composition, and lifecycle.

� Functionalaspect is a set of concerns related to the sensing, computational, control, com-
munications and actuation functions of the CPS.

� Businessaspect includes the concerns about enterprise, time to market, environment, reg-
ulation, cost, etc.

� Humanaspect is a set of concerns related to how a CPS is used by humans or interacts
with them.

� Trustworthinessaspect is a set of concerns related to the trustworthiness of CPS including
security, privacy, safety, reliability, and resilience. In this paper we adopt the de�nition
of trustworthiness from the NIST CPS Framework, where the term is taken to denote the
demonstrable likelihood that the system performs according to designed behavior under
any set of conditions as evidenced by its characteristics.3

� Timing aspect: Concerns about time and frequency in CPS, including the generation and
transport of time and frequency signals, time-stamping, managing latency, timing compos-
ability, etc.

� Data aspect includes the concerns about data interoperability including data semantics,
identify operations on data, relationships between data, and velocity of data.

� Communicationsaspect includes the concerns about the exchange of information between
components of a CPS.

� Boundariesaspect is set of concerns about the interdependence among behavioral do-
mains. Concerns related to the ability to successfully operate a CPS in multiple application
area.

� Compositionaspect includes the concerns about the ability to compute selected properties
of a component assembly from the properties of its components. Compositionality requires
components that are composable: they do not change their properties in an assembly. Tim-
ing composability is particularly dif�cult.

� Lifecycleaspect: Concerns about the lifecycle of CPS including its components.

TheCPS Ontologyde�nes concepts and individuals related to concepts (with focus onTrust-
worthiness) and the relationships between them (e.g., has-subconcern). Figure 2, excluding the
nodes labeledCAM, SAMandBATand links labeled “relates” and “active”, shows a fragment of
the CPS ontology where circle nodes represent speci�c concerns and grey rectangle nodes repre-
sent properties. To facilitate information sharing, the CPS Ontology leverages standards such as
the Resource Description Framework (RDF4) and the Web Ontology Language (OWL5) for de-
scribing the data, representing the entities and their relationships, formats for encoding the data
and related metadata for sharing and fusing. An entity or relationship is de�ned in the ontology

3 This is a pragmatic choice dictated by our intent to provide a formal account of the NIST CPS Framework. The debate
on a universally accepted de�nition of trustworthiness is on-going and is beyond the scope of this paper.

4 https://www.w3.org/TR/rdf-concepts/
5 https://www.w3.org/TR/owl-features/

6 Thanh H. Nguyen, et al.

by an RDF-triple (subject, predicate, object). Below are the main classes and relationships in the
CPS ontology.

Aspects and Concerns.The ontology de�nes the highest-level concept ofConcernwith its re-
�nement of Aspect. In the concern tree in Figure 1, the circle nodes of a concern tree represent
speci�c concerns which are individuals of classConcern. The root nodes of the concern tree is
a particular kind of concern that is an instance of classAspect(subclass ofConcern). Speci�c
concerns are represented as individuals:Trustworthiness as an individual of classAspect,
Security andCybersecurity of classConcern. Edges linking aspects and concerns are rep-
resented by the relationhas-subconcern . A relationhas-subconcern is used to associate a
concern with its sub-concerns. Thus,Trustworthiness aspecthas-subconcern Security ,
which in turnhas-subconcern Cybersecurity .

Properties.Properties of a CPS are represented by individuals of classProperty. In the CPS
Framework, a concern can be addressed by a combination of properties. An edge that links a
property p with an aspect or concernc is represented by the relationaddressed-by , which
says that concernc is addressed by propertyp. For example in Figure 2 (LKAS domain), con-
cern Integrity has been addressed by some properties:Secure-Boot , Advanced-Mode ,
Powerful-Mode , Normal-Mode andSaving-Mode .

To ease the reading, we provide a summary of the main classes and relationships in the CPS
ontology in Table 1.

2.2 Answer Set Programming

Answer Set Programming (ASP) Marek and Truszczyński (1999); Niemel̈a (1999) is a declar-
ative programming paradigm based on logic programming under the answer set semantics. A
logic programP is a set of rules of the form:

c a1; : : : ;am;not b1; : : : ;not bn

wherec, ai 's, andbi 's are literals of a propositional language6 andnot represents (default) nega-
tion. c can be absent. Intuitively, a rule states that ifai 's are believed to be true and none of the
bi 's is believed to be true thenc must be true. For a ruler, r+ andr � , referred to as thepositive
andnegativebody, respectively, denote the setsf a1; : : : ;amg andf b1; : : : ;bng, respectively.

Let P be a program. An interpretationI of P is a set of ground atoms occurring inP. The
body of a ruler is satis�ed byI if r+ � I andr � \ I = /0. A ruler is satis�ed byI if the body ofr
is satis�ed byI impliesI j= c. Whenc is absent,r is a constraint and is satis�ed byI if its body
is not satis�ed byI . I is a model ofP if it satis�es all rules inP.

For an interpretationI and a programP, thereductof P w.r.t. I (denoted byP I) is the program
obtained fromP by deleting(i) each ruler such thatr � \ I 6= /0, and(ii) all atoms of the form
not a in the bodies of the remaining rules. Given an interpretationI , observe that the program
P I is a program with no occurrence ofnot a. An interpretationI is ananswer setGelfond and
Lifschitz (1990) ofP if I is the least model (wrt.�) of P I .

A programP can have several answer sets, one answer set, or no answer set.P is said to be
consistent if it has at least one answer set; it is inconsistent otherwise. Several extensions (e.g.,
choice atoms, aggregates, etc.) have been introduced to simplify the use of ASP. We will use and

6 For convenience, we often use �rst order logic literals under the assumption that they represent all suitable ground
instantiations.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework7

Class Meaning

Concern
Concerns that stakeholders have w.r.t. to a system, such assecurity, integrity, etc.
They are represented in the ontology as individuals. The link between a concern
and its sub-concerns is represented by thehas-subconcern relation.

Aspect
High-level grouping of conceptually equivalent or related cross-cutting concerns
(i.e.,human, trustworthiness, etc). In the ontology,Aspectis subclass of class
Concern.

Property
Class of the properties relevant to a given CPS. The fact that a property addresses
a concern is formalized by relationaddressed-by .

Con�guration
Features of a CPS that characterize its state, e.g., if a component is on or off.
When property satisfaction can change at run-time, corresponding individuals
will be included in this class.

Action and
Constraint

Actions are those within the control of an agent (e.g., an operator) and those that
occur spontaneously. Constraints capture dependencies among properties (e.g.,
mutual exclusion).

Object Property Meaning

cpsf:hasSubCon
The object property represents thehas-subconcern relationship between the
concerns.

cpsf:addrConcern
The object property represents theaddressed-by relation between a concern
and a property.

cpsf:impactPositively
The object property represents positive impact relation between apropertyand a
concern.

Table 1: Main components of the CPS Ontology

explain them when needed. Given a programP and an atoma, we write P j= a to say thata
belongs to every answer set ofP. P j� a to say thata belongs to at least one answer set ofP.

We illustrate the concepts of answer set programming by showing how the 3-coloring problem
of a bi-directed graphG can be solved using logic programming under the answer set semantics.
Let the three colors be red (r), blue (b), and green (g) and the vertex set ofG bef 0;1; : : : ;ng. Let
P (G) be the program consisting of

� the set of atomsedge(u;v) for every edge(u;v) of G,
� for each vertexu of G, the rule stating thatu must be assigned one of the colors red, blue,

or green:

1f color(u;g) ;color(u; r) ;color(u;b)g1

8 Thanh H. Nguyen, et al.

This rule uses the choice atom, introduced in Niemelä et al. (1999), to simplify the use of
ASP. This atom says that exactly one of the atomscolor(u;g), color(u; r), andcolor(u;b)
must be true.

� for each edge(u;v) of G, three rules representing the constraint thatu andv must have
different color:

 color(u; r) ;color(v; r) ;edge(u;v)

 color(u;b) ;color(v;b) ;edge(u;v)

 color(u;g) ;color(v;g) ;edge(u;v)

It can be shown that for each graphG, (i) P (G) has no answer set, i.e., is inconsistent iff the 3-
coloring problem ofG does not have a solution; and (ii) if P (G) is consistent then each answer
set ofP (G) corresponds to a solution of the 3-coloring problem ofG and vice versa.

2.3 Action LanguageB

We review the basics of the action description languageB Gelfond and Lifschitz (1998). An
action theory inB is de�ned over two disjoint sets, a set of actionsA and a set of �uentsF.
A �uent literal is either a �uent f 2 F or its negation: f . A �uent formula is a propositional
formula constructed from �uent literals. An action domain is a set of laws of the following form:

Executability condition: executablea if p1; : : : ; pn (1)

Dynamic law: a causesf if p1; : : : ; pn (2)

StaticCausal Law: f if p1; : : : ; pn (3)

wheref andpi 's are �uent literals anda is an action. (1) encodes an executability condition of an
actiona. Intuitively, an executability condition of the form (1) states thata can only be executed
if pi 's hold. (2), referred to as adynamic causal law, represents the (conditional) effect ofa. It
states thatf is caused to be true after the execution ofa in any state of the world wherep1; : : : ; pn

are true. Whenn = 0 in (2), we often omit laws of this type from the description. (3) represents a
static causal law, i.e., a relationship between �uents. It conveys that whenever the �uent literals
p1; : : : ; pn hold then so isf . For convenience, we sometimes denote the set of laws of the form
(3), (2), and (1) byK, DD, andDE, respectively, for each action domainD.

A domain given inB de�nes a transition function from pairs of actions and states7 to sets
of states whose precise de�nition is given below. Intuitively, given an actiona and a states, the
transition functionF de�nes the set of statesF (a;s) that may be reached after executing the
actiona in states. If F (a;s) is an empty set it means that the execution ofa in s results in an
error. We now formally de�neF .

Let D be a domain inB . A set of �uent literals is said to beconsistentif it does not contain
f and: f for some �uent f . An interpretation Iof the �uents inD is a maximal consistent set
of �uent literals of D. A �uent f is said to be true (resp. false) inI iff f 2 I (resp.: f 2 I). The
truth value of a �uent formula inI is de�ned recursively over the propositional connectives in the
usual way. For example,f ^ g is true inI iff f is true inI andg is true inI . We say that a formula
j holds inI (or I satis�esj), denoted byI j= j , if j is true inI .

7 statesare de�ned later

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework9

Let u be a consistent set of �uent literals andK a set of static causal laws. We say thatu is
closed underK if for every static causal law

f if p1; : : : ; pn

in K, if u j= p1 ^ : : :^ pn thenu j= f . By ClK (u) we denote the least consistent set of literals from
D that containsu and is also closed underK. It is worth noting thatClK (u) might be unde�ned.
For instance, ifu contains bothf and: f for some �uent f , thenClK (u) cannot containu and be
consistent; another example is that ifu = f f ;gg andK contains

f if h and : h if f ;g

thenClK (u) does not exist because it has to contain bothh and : h, which means that it is
inconsistent.

Formally, astateof D is an interpretation of the �uents inF that is closed under the set of
static causal lawsK of D.

An actiona is executablein a states if there exists an executability proposition

executable a if f1; : : : ; fn

in D such thats j= f1 ^ : : : ^ fn. Clearly, if n = 0, thena is executable in every state ofD. The
direct effect of an action ain a states is the set

e(a;s) = f f j a causes f if f1; : : : ; fn 2 D;s j= f1 ^ : : : ^ fng:

For a domainD, F (a;s), the set of states that may be reached by executinga in s, is de�ned as
follows.

1. If a is executable ins, then

F (a;s) = f s0 j s0 is a state ands0= ClK
�
e(a;s) [

�
s\ s0�� g;

2. If a is not executable ins, thenF (a;s) = /0.

Every domainD in B has a unique transition functionF , which we call thetransition function
of D. The transition function allows one to compute the set of states reached by the execution of
a sequence of actionsa = [a1; : : : ;an] from a states0, denoted byF̂ (a ;s0), as follows:

1. If n = 0 thenF̂ (a ;s0) = s0

2. If n > 0 thenF̂ (a ;s0) = [u2F (a1;s0)F̂ (a 0;u) wherea 0= [a2; : : : ;an] and if F̂ (a 0;u) = /0
for someu thenF̂ (a ;s0) = /0.

2.4 Representation and Reasoning with CPS Ontology in ASP

Various researchers have explored the relationship between ASP and the Semantic Web (e.g.,
Eiter (2007); Nguyen et al. (2018b;a; 2020b)), in particular with the goal of leveraging existing
ontologies. In these works, an ASP program is used for reasoning about classes, properties, in-
heritance, relations, etc. Given ASP's non-monotonic nature, it also provides suf�cient �exibility
for dealing in a principled way with default values, exceptions and for reasoning about the effects
of actions and change.

We use a similar approach in this paper to leverage the existing CPS Ontology for reasoning
tasks related to CPS and concerns. Our approach includes the ability to query the CPS Ontol-
ogy for relevant knowledge and provide it to an ASP-based reasoning component. Because the

10 Thanh H. Nguyen, et al.

present paper is focused on the latter, for simplicity of presentation we assume that all relevant
classes, instances, relations, properties of the CPS ontology are already encoded by an ASP pro-
gram. We denote this program byP(W) whereWdenotes the ontology, which is the CPS ontology
in this case. We list the predicates that will be frequently discussed in this paper.

� class(X) : X is a class;
� subClass(X,Y) : X is a subclass ofY;
� aspect(I) (resp.concern(I) , prop(I) , decomp func(I)): I is an individual of class

aspect (resp. concern, property, decomposition function);
� subCo(I,J) : J is sub-concern ofI ; and
� addBy(C,P) : concernC is addressed by propertyP (a link from a propertyP to a concern

C in the ontology);
� positiveImpact(P,C) : The satisfaction of propertyP impacts positively on the satis-

faction of concernC.
� func(F,C) : F is a functional decomposition of concernC.

Listing 1:P (W) :ASP program for CPS OntologyW

1 class (X) :- RDFtriple (X," rdf :type"," owl :Class").
2 subClass (X,Y) :- RDFtriple (X," rdfs :subClassOf",Y), class (X), class (Y).
3 subClass (X,Y) :- subClass (X,Z), subClass (Z,Y).
4 instance (I) :- RDFtriple (I," rdf :type"," owl :NamedIndividual").
5 isInstanceOf (I,X) :- instance (I), class (X), RDFtriple (I," rdf :type",X).
6 isInstanceOf (I,Y) :- instance (I), class (X), class (Y), subClass (X,Y),

isInstanceOf (I,X).
7 concern (C) :- instance (C), isInstanceOf (C," cpsf :Concern").
8 aspect (A) :- instance (A), isInstanceOf (A," cpsf :Aspect").
9 prop (P) :- instance (P), isInstanceOf (P," cpsf :Property").

10 decompfunc (F) :- instance (F), isInstanceOf (F," cpsf :DecompFunc").
11 subCo(I,J) :- concern (I), concern (J), RDFtriple (I," cpsf :hasSubCon",J).
12 addBy(C,P) :- prop (P), concern (C), RDFtriple (P," cpsf :addrConcern",C).
13 func (F,C) :- decompfunc (F), concern (C), RDFtriple (F," cpsf :

decompFunctionOf",C).
14 positiveImpact (P,C) :- concern (C), prop (P), RDFtriple (P," cpsf :

impactPositively",C).

Listing 1 represents the ASP programP (W) of CPS Ontology W. The predicate
RDFtriple(S,P,O) denotes the RDF triple store which has been queried and extracted fromW
by using SPARQL8. Lines 1–2 de�ne theclass(X) andsubClass(X,Y) based on the ontol-
ogy extraction. Line 3 reasons the extension about subclass relationship. Lines 4–6 encode the
de�nitions of instance(I) andisInstanceOf(I,X) with the similar method. The concern,
aspect, property and decomposition function instances are de�ned in Lines 7–10. And, the three
rules in Lines 11–14 represent the encoding ofsubCo(I,J) , addBy(C,P) , func(F,C) and
positiveImpact(P,C) relationships respectively.

Given a collection of individuals in the CPS ontologyW, P (W) will allow us to check
addBy(c; p), subCo(i; j), f unc(f ;c), positiveImpact(p;c), etc; whether a concernc is ad-
dressed by a propertyp, concern j is a sub-concern of concerni, f is functional decompo-
sition of concernc, the satisfaction ofp impacts positively on concernc, etc. respectively.

8 https://www.w3.org/TR/rdf-sparql-query/

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework11

They are written as:P (W) j= addBy(c; p), P (W) j= subCo(i; j), P (W) j= f unc(f ;c),P (W) j=
positiveImpact(p;c), etc.

Similar rules for reasoning about the inheritance between concerns, inheritance between sub-
concerns and concerns, etc. are introduced whenever they are used subsequently. We note that
the CPS framework does come with an informal semantics about when a concern is supposedly
be satis�ed. The work in Balduccini et al. (2018) provides a preliminary discussion on how the
satisfaction of a concern can be determined. It does not present a formal description of the CPS
system as in this paper and does not address the functional decomposition issue though.

3 CPS Theory Speci�cation

3.1 Formal De�nition

In this section, we develop a formal de�nition of CPS theory and its semantics. The proposed
notion of a CSP theory will allow one to specify and reason about the concerns of the CPS.
Our discussion will focus onTrustworthiness aspect in the CPS ontology but the proposed
methodology is generic and is applicable to the full CPS ontology. To motivate the de�nition, we
use the following example:

Example 2(Extended from Balduccini et al. (2018))
Consider a lane keeping/assist system (LKAS) of an advanced car that uses a camera (CAM) and
a situational awareness module (SAM). The SAM processes the video stream from the camera
and controls the automated navigation system through a physical output. In addition, the system
also has a battery (BAT).

CAM and SAM may use encrypted memory (data encrypted) and a secure boot
(secure boot). Safety mechanisms in the navigation system cause it to shut down if issues are
detected in the input received from SAM. The CAM and SAM can be in one of two operational
modes, the basic mode (basic mode or b mode) and the advanced mode (advanced mode or
a mode). The two properties address concernIntegrity relevant tooperation function. In
advanced mode, the component consumes much more energy than if it were in basic mode. BAT
serves the system energy consumption and relates with one of three properties,saving mode
(s mode) or normal mode (n mode) or powerful mode (p mode). Three properties address
concernIntegrity relevant to theenergy functionality.

The relationship betweenSAM, CAM and BAT are: (1) If both SAM and CAM are in
advanced mode, the battery has to work insaving mode. (2) if CAM and SAM are in
basic mode, the battery can be inpowerful mode or normal mode and (3) if one of SAM
andCAMis in advanced mode and the other one is inbasic mode, then the battery must work
in normal mode.

The relationship between the LKAS domain and the CPS ontology is shown in Figure 2. Infor-
mally, the CPSF de�nes that the concernIntegrity is satis�ed if secure boot is satis�ed
and its two functionalities,operation andenergy , are satis�ed; theoperation functional-
ity is satis�ed if at least one of the propertiesf advanced mode, basic modeg is satis�ed; and
the energy functionality is satis�ed if there is at least one off saving mode, normal mode,
powerful modeg properties is satis�ed. Intuitively, this can be represented by the following

12 Thanh H. Nguyen, et al.

formula:
(secure boot) ^ (advanced mode_ basic mode)
^ (saving mode_ normal mode_ powerful mode)

(4)

Fig. 2: CPS Ontology and LKAS domain

The example shows that a CPS system is a dynamic domain and contains different components,
each associated with some properties which affect the satisfaction of concerns de�ned in the
CPS ontology. In addition, the satisfaction of concerns depends on the truth values of formulae
constructed using properties and a concern might be related to a group of properties. We will
write w (c) to denote the set of properties thataddressesa concernc. We therefore de�ne a CPS
system as follows.

De�nition 1 (CPS System)
A CPS systemS is a tuple (CO;A;F;R;G) where:

� CO is a set of components;
� A is a set of actions that can be executed overS ;
� F is a �nite set of �uents (or state variables) of the system;
� R is a set of relations that maps each physical componentco2 CO to a set of propertiesR(co)

de�ned in the CPS ontology; and
� Gis a set of triples of the form(c; fu;y) wherec is a concern,fu is a functional decomposition

of concernc, andy is a formula constructed overw (c).

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework13

In De�nition 1, (A;F) represents the dynamic domain ofS , Grepresents constraints on the sat-
isfaction of concerns in the CPSF ontology inS , andRencodes the properties of components in
S which are related to the concerns speci�ed in the CPSF. As the truth values of these properties
can be changed by actions, we assume that

[co2COR(co) [f active(co; p) j co2 CO; p 2 R(co)g � F:

where active(co; p) is true means that the componentco is currently active with property
p. (A;F) is an action theory as described in Subsection 2.3. Note that(A;F) can be non-
deterministic due to the presence of statements of the form (3). Although it is possible, this
rarely happens in practical applications. We will, therefore, assume that(A;F) is deterministic
throughout this paper. We illustrate De�nition 1 in the following example.

Example 3
The CPS system in Example 2 can be described byS lkas = (COlkas;Alkas;Flkas;Rlkas;Glkas)
where:

� COlkas = f SAM;CAM;BATg.
� Flkas contains the following �uents:

— active (X;P) denotes that componentX 2 COlkas is working actively with prop-
erty P, e.g., active(cam,basic mode) , active(cam,data encrypted) ,
active(sam,finger printing) and active(bat,normal mode) states that
the camera is working in basic mode, with encrypted data, the SAM is authenticated by
�ngerprinting method and the battery is working in normal mode.

— on(X) (off (X)) denotes that componentX is (isn't) ready for use.
— the set of properties that are related to the components (P denotes that the truth value

of propertyP), e.g.,basic mode, oauth , etc. These properties are drawn in Figure 2
(rectangle boxes except the three componentsSAM, CAM, BAT).

The relationship among the �uents are encoded below:

— active(BAT;savingmode) if active(SAM;advancedmode) ;active(CAM;advancedmode)
which encodes the statement if bothSAMandCAMare inadvanced mode, the battery has
to work in saving mode.

— active(BAT;normal mode) if active(SAM;advancedmode) ;active(CAM;basicmode)
and
active(BAT;normal mode) if active(SAM;basicmode) ;active(CAM;advancedmode)
encode the statement if one ofSAMandCAMis in advanced mode and the other one is
in basic mode, then the battery must work innormal mode.

— active(BAT; power f ul mode) _ active(BAT;normal mode) if active(SAM;basicmode) ;
active(CAM;basicmode) which encodes the statement if bothSAM and CAMare in
basic mode, the battery can be inpowerful mode or normal mode.

� Alkas contains the following actions:

— switM (X;M): switching the componentX to a modeM. The set of the form (1) and
(2) for the action that switches theCAM from basic mode to advanced mode
switM (cam;advanced mode) contains the following statements:

14 Thanh H. Nguyen, et al.

– executable switM (cam;advanced mode) if on(cam) ;active (cam;basic mode)
which says that the actionswitM (cam;advanced mode) can only be executed if the
componentCAMis on and in thebasic mode.

– switM (cam;advanced mode) causes active (cam;advanced mode) ;
: active (cam;basic mode).

This states that if we switch the componentCAMto theadvanced mode then it is in
theadvanced mode and not in thebasic mode.

The statements for switM (cam;basic mode) that switches the CAM from
advanced mode to basic mode are similar. And the similar statements for
switM (sam;basic mode) and switM (sam;advanced mode) which switch the compo-
nentSAMto basic mode andadvanced mode respectively.

— There are also actions that switch other components to different modes or methods. These
are:

– switA (X;A): switching between authorization methods whereX = SAM.
– switV (X;V): switching between veri�cation methods whereX can beSAMor CAM.
– switEM(X;EM): switching between encryption method whereX can beSAMor CAM.
– switEA (X;EA): switching between encryption algorithms whereX can beSAM or

CAM.

The set of statements of the form (1) and (2) associated with these actions are similar to
those associated withswitM (X;M) and is omitted here for brevity.

— tOn(P) andtOff (P) denote the actions of enabling and disabling the truth value of prop-
erty P, respectively. The sets of statements of the form (1) and (2) associated to each of
these actions is similar. We list those associated withtOn(P) as an example:

– executabletOn(basic mode) if : basic mode: this can only be executed if the sys-
tem property is not in thebasic mode.

– tOn(basic mode) causesbasic mode: set the system property tobasic mode.

— patch (P) denotes action of patching some propertiesP with available patch software. The
set of statements for actionpatch (P) could be:
executablepatch (conn encrypted) if : conn encrypted ;availablePatch (conn encrypted)
patch (conn encrypted) causesconn encrypted

� Rlkas = f CAM 7! f ip filtering , algo DES, algo AES, algo RSA, data encrypted ,
conn encrypted , maccheck, protocol encrypted , secure boot , basic mode,
advanced mode, trusted auth device , trusted environment , iris scang, SAM
7! f data encrypted , algo RSA , algo DES, algo AES, protocol encrypted ,
conn encrypted , firewall setup , maccheck, ip filtering ,advanced mode,
basic mode, finger printing , two factors , iris scan, oauth , opt code, email verify
, ip check , trusted environment , secure boot g, BAT 7! f powerful mode,
trusted environment , normal mode, saving modegg.
The components and relations to the properties are illustrated by the arrow lines with “relates”
labels in the bottom part of Figure 2.

� Glkas contains the following triples (see also Figure 3):

— (integrity , operation , advanced mode _ basic mode) says the satisfaction of for-
mula advanced mode _ basic mode addresses the concernintegrity in the relevant
functional decompositionoperation .

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework15

Fig. 3: Integrity andAuthorization concerns with their Functionalities and Properties

— (integrity , energy , saving mode _ normal mode _ powerful mode) denotes
the formulasaving mode _ normal mode _ powerful mode addresses the concern
integrity in the relevant functional decompositionenergy .

— (authorization , sign in , oauth ^ opt code) denotes the satisfaction of formula
oauth ^ opt code addresses the relevant functional decompositionsign in of the con-
cernauthorization .

— (authorization , sign in , two factors _ finger printing _ iris scan) denotes
the formula two factors _ finger printing _ iris scan addresses the concern
authorization in the relevant functional decompositionsign in .

— (authorization , sign in , oauth ^ ip check ^ email verify) denotes that the con-
cernauthorization with the relevant functional decompositionsign in is addressed
by formulaoauth ^ ip check ^ email verify .

In addition, the functional decomposition of theIntegrity concern in-
dicates that the formula (secure boot) ^ (advanced mode_ basic mode) ^
(saving mode_ normal mode_ powerful mode) addresses theIntegrity concern.
Likewise, the formula

trusted auth device ^ trusted environment ^
(two factors _ finger printing _ iris scan _
(oauth ^ opt code) _ (oauth ^ ip check ^ email verify))

addresses theAuthorization concern.

Given a CPS systemS with a set of �uentsF, a state sof S is an interpretation ofF that
satis�es the set of static causal laws of the form (3) (Subsection 2.3).

De�nition 2 (CPS Theory)
A CPS theoryis a pair(S ; I) whereS is a CPS system andI is a state representing theinitial
con�guration of S .

3.2 The Semantics of CPS Theories

Given(S ; I) whereS = (CO;A;F;R;G), the action domain(A;F) speci�es a transition function
F S between states (Subsection 2.3). In each state, the satisfaction of a particular concern in the
CPSF is evaluated using the relationshipR and the componentsC. We will de�ne this relation

16 Thanh H. Nguyen, et al.

next. First, we note that a concern in a CPS can be related to some components inS , directly
through theR relation and the formulae inG or indirectly through the inheritance in the CPS
ontology. Observe that the development of the CPS relies on the following intuition:

� A concern might have several sub-concern;
� A concern might be addressed by a set of functional decompositions which are represented

by Boolean formulae.

This leads to the following informal meaning of the notion of satisfaction of a concern in a
state of the CPS:

� For each concernc, if G does not contain any tuple of the form(c; f u;y) then c is
satis�ed in a states when every of its direct subconcerns is satis�ed; for example, the
Trustworthiness concern is satis�ed in a states of the LKAS system if its children,
Safety , Reliability , Security , Resilience , andPrivacy , are satis�ed; and
every of its properties is satis�ed.

� For each concernc, if Gcontains some tuple of the form(c; f u;y) thenc is satis�ed when
y c = ^ (c; f u;y)2Gy is satis�ed insand every propertyp related toc–as speci�ed by the CPS
ontology–is satis�ed ins; for example, theIntegrity concern is satis�ed in the states
of the LKAS system if the formula (4) is satis�ed ins wheresecure boot is a property
related toIntegrity and the other conjuncts are the two disjunctions representing the
two functional decomposition ofIntegrity .

Next, we formalize precisely the notion of satisfaction of a concern. LetL (c) be the conjunc-
tion of ^ (c; f u;y)2Gy and all properties that are related toc and not appearing in any formula of
the form(c; f u;y) 2 G. For example, in formula (4), the last two conjuncts are the two func-
tional decompositions ofIntegrity from Glkas and the �rst conjunct is a property that does not
appear in any functional decomposition ofIntegrity . In the following, we denotehci is the set
of descendants ofc such that for eachd 2 hci , d has no sub-concern.

De�nition 3
Let sbe a state inS = (CO;A;F;R;G) andc be a concern. We say thatc is satis�ed in s, denoted
by s j= c, if

� s j= L (c); and
� every sub-concernc0of c is satis�ed bys.

Having de�ned when a concern is satis�ed in a state, we can de�ne the notion of satisfaction
of a concern after the execution of a sequence of actions as follows. Recall the transition function
F S dictates how the system changes from one state to another state and the set of states resulting
from the execution of a sequence of actionsa from a state can be computed byF̂ S . Therefore,
we can de�ne the satisfaction of a concernc after

De�nition 4
Let (S ; I) be a CPS theory,a a sequence of actions, andc a concern in the CPS Ontology.c
is satis�ed after the execution of a sequence of actionsa from the initial stateI , denoted by
(S ; I) j= c after a , iff

F̂ S (a ; I) 6= /0^8 u 2 F̂ S (a ; I) : [u j= c] (5)

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework17

In the above de�nition, the condition̂F (a ; I) 6= /0 guarantees thata is a valid sequence of
actions, i.e., its execution inI does not fail. The second condition is the standard de�nition of
logical entailment.

De�nitions 3-4 provide the basis for us to answer questions related to the satisfaction of a
concern in a state or after a sequence of actions is executed, i.e., theconcern satisfactionprob-
lem. In the following, we will discuss other problems that are of importance for the design and
development of CPS systems.

3.3 Reasoning Tasks in CPS

Knowing when a concern is (is not) satis�ed is very important. We now discuss the issues related
to the satisfaction of concerns in a CPS. We focus on the following problems:

1. What is the most/least trustworthy9 component in a CPS?
2. Are there non-compliance in a given CPS? How to detect non-compliance?
3. What to do if an (external or internal) event occurs and leads to an undesirable situation?

How to recover from such situation?
4. What is a best or most preferred mitigation strategy for a given situation?

In what follows, we provide precise formulations of the aforementioned tasks and propose
solutions for them. For simplicity of presentation, we focus on discussing these questions with
respect to a given state. The answers to these questions after the execution of a sequence of
actions from the initial state can be de�ned similarly to the de�nition of the satisfaction of a
concern via the functionF , as in De�nition 4. Our implementation covers both situations.

3.3.1 Most/Least Trustworthy Components

GivenS = (CO;A;F;R;G) and a states in S . A componentx 2 CO might be related to many
concerns through the properties inR(x), whose truth values depend on the states. Recall that for
each propertyp and componentx, active(x; p) is true ins indicates that component is active with
propertyp in the states; furthermore, the CPS ontology contains the speci�cation thatp posi-
tivelyor negativelyimpacts a concernc. The latter are de�ned by the predicatesaddBy(c; p) and
positiveImpact(p;c) in W(Subsection 2.4). As such, when a component is active with a property,
it can positively impact a concern. For example, in Figure 2 and 3, the propertysecure boot
addresses theIntegrity concern and is described to impact positively on the satisfaction of
Integrity concern byW. In the current state, the componentSAM is working on property
secure boot . Assuming that concernIntegrity is satis�ed in this state, we say that compo-
nentSAMdirectly positively affectsto theIntegrity concern through propertysecure boot .
We say that a componentx directly impactsa concernc in states through a propertyp if the
following conditions hold:

1. x works with propertyp in states; and
2. p addresses concernc andp is true ins.

9 Recall that our discussion focuses on trustworthiness but it can easily be adapted to other aspects de�ned in the CPS
ontology.

18 Thanh H. Nguyen, et al.

If x directly impactsc in states throughp and the CPS ontology speci�es that the satisfaction of
propertyp impacts positivelyon the satisfaction ofc andc is satis�ed in states, then we say that
x directly and positively affects c.

As the notion of concern satisfaction is propagated through the sub-concern relationship, it
is natural for us to de�ne that componentx impacts(resp.affects positively) concernc through
propertyp in a states, denoted byimpact(x;c;s) (resp.pos(x; p;c;s)), if (i) x directly addresses
(resp. direct positively affects)c through a propertyp; or (ii) there exists some sub-concernc0of
c that is addressed (resp. positively affected) byx.

In the above example (see also Figure 2), the componentSAMdirectly positively affectsto the
Integrity concern through propertysecure boot thenSAMalsoaffects positivelyconcerns
Cyber-Security , Security and Trustworthiness in the concern tree through property
secure boot .

Given a componentx, the ratio between the number of concerns that are positively affected
by x and the number of concerns that are addressed byx characterizes how effectivelyx in�u-
ences the system. For this reason, we will use this number to characterize the trustworthiness of
components in the system. So, we de�ne

tw(x;s) =
Sp2R(x) j f c j s j= c^ positiveImpact(p;c) ^ p 2 s^ active(x; p)g j

Sp2R(x) j f c j (s6j= c_ : positiveImpact(p;c)) ^ addBy(c; p) ^ p 2 s^ active(x; p)g j +1
(6)

Assume that all concerns and properties are equally important, we could compare the trustwor-
thiness of a componentx 2 CO with that of a componentx02 COby comparing the ratiostw.

De�nition 5
For a CPS systemS = (CO;A;F;R;G), x1;x2 2 CO, and statesof S ,

� x1 is more trustworthythanx2 in s, denoted byx1 � s x2 (or x2 is less trustworthythanx1, denoted
by x2 � s x1), if

— tw(x1;s) > tw(x2;s); or
— tw(x1;s) = tw(x2;s) = 0 andimpact(x1;s) < impact(x2;s) where

impact(x;s) = Sp2R(x) j f c j (s6j= c_ : positiveImpact(p;c)) ^ addBy(c; p) ^ p 2 s^
active(x; p)g j.

� x1 is as trustworthy as x2 in s, denoted byx1 � s x2, if

— tw(x1;s) = tw(x2;s) > 0; or
— tw(x1;s) = tw(x2;s) = 0 andimpact(x1;s) = impact(x2;s).

x1 � s x2 denotes thatx1 � s x2 or x1 � s x2. x is a most (least) trustworthy component ofS in s if
x � s x0(x0� s x) for everyx02 CO.

Proposition 1
Let S = (CO;A;F;R;G) be a CPS system ands be a state inS . The relation� s over the
components ofS is transitive, symmetric, and total.

Proof
It is easy to see that for any pair of components, eitherc1 � s c2, c2 � s c1, orc1 � s c2. Furthermore,
c � s c. It follows that� s is therefore transitive, symmetric, and total.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework19

3.3.2 Non-compliance Detection in CPS

The design of a CPS is often subject to competing constraints from various people or organiza-
tions with different focus and type of expertise. This may result in sets of constraints that are
unsatis�able, e.g., a set of concerns cannot (never) be satis�ed, giving rise to a non-compliance.
Example 1 shows that there exists a situation in which competing concerns cannot be satis�ed at
the same time. In general, the problem is formulated as follows.

De�nition 6 (Lack of Compliance)
Given the CPS systemS = (CO;A;F;R;G), an integern, a set of actionsSA� A, and a set of
concernsSC, we say thatS is

1. weakly n-noncompliantwrt. (SA;SC) if there exists a sequencea of at mostn actions inSAand
an initial stateI , such that(S ; I) 6j= c after a for some concernc 2 SC.

2. strongly n-noncompliantwrt. (SA;SC) if for every sequencea of at mostn actions inSAand an
initial stateI , (S ; I) 6j= c after a for some concernc 2 SC.

Given an integerk, weakly k-noncompliantimplies that there is a potential that some concern
in the setSCof concerns might not be satis�ed.Strongly k-noncompliantindicates that there is
always some concern that cannot be satis�ed. Systems that arestrongly k-noncompliantmight
need to be re-designed.

It is easy to see that, by De�nition 4, checking whether a system isweakly k-noncompliantis
equivalent to identifying a plan of lengthk or less that “makes some concern unsatis�ed.” On the
other hand, checking whether a system isstrongly k-noncompliantis equivalent to identifying
a plan of length less thank that “satis�es all concerns”. Since we assume that the speci�cation
language for CPS is propositional and planning for bounded plans is NP-complete, we can easily
derive the following results:

Proposition 2
GivenS , (SA;SC), andk, checking whetherS is weakly k-noncompliantis NP-complete and
checking whetherS is strongly k-noncompliantis co-NP-complete.

Proof
This relies on the fact that checking whether a planning problem has a solution of lengthk is
NP-complete (e.g., the PLAN -LENGTH problem in Ghallab et al. (2004)).

3.3.3 Mitigation Strategies

Let S = (CO;A;F;R;G) be a CPS system ands be a state ofS . When some concerns are
unsatis�edin s, we need a way tomitigatethe issue. Since the execution of actions can change
the satisfaction of concerns, the mitigation of an issue can be achieved by identifying a plan that
suitably changes the state of properties related to the concerns. The mitigation problem in a CPS
can be de�ned as follows:

De�nition 7 (Mitigation Strategy)
Let S = (CO;A;F;R;G) be a CPS domain ands a state inS . Let S be a set of concerns inW.
A mitigation strategyaddressingS is a plana whose execution at the initial states results in a
states0such that for everyc 2 S, c is satis�ed ins0.

20 Thanh H. Nguyen, et al.

De�nition 7 assumes that all plans are equal. This is often not the case in a CPS system. To
illustrate this issue,

Example 4
Consider the LKAS system in Example 2. The initial stateIlkas is given by:CAMandSAMare in
basic mode andsecure boot , BAT is in powerful mode and every properties inIlkas are ob-
served to beTrue. The energy consumption constraints ofBATare encoded in Listing 2. Figure 4
shows a fragment of the CPS theory that is related to the problem described in this example.

Fig. 4: Current con�guration ofDlkas related toIntegrity concern after cyber-attack

Listing 2:Pc
lkas: Battery consumption constraints inDlkas

1 h(active (bat,saving_mode),T) :- h(active (cam,advanced_mode),T),
h(active (sam,advanced_mode),T), step (T).

2 1{ h(active (bat,powerful_mode),T); h(active (bat,normal_mode),T)}1 :-
h(active (cam,basic_mode),T), h(active (sam,basic_mode),T), step (T).

3 h(active (bat,normal_mode),T) :- h(active (X,advanced_mode),T), X!=Y,
h(active (Y,basic_mode),T), step (T).

4 :- h(active (bat,M1),T), h(active (bat,M2),T), M1!=M2, step (T).

A cyber-attack occurs and the controller module is attacked, which causesbasic mode to
becomeFalse while advanced mode is (True). Given this information, we need a mitigation
strategy for the setS= f Integrityg. The mitigation strategies (with the length is 2) can be gener-
ated as following:

� a1= [tOn(basic mode)]
� a2= [switM(cam,advanced mode) ; switM(sam,advanced mode)]
� a3= [switM(sam,advanced mode) ; switM(cam,advanced mode)]
� a4= [switM(sam,advanced mode) ; tOn(basic mode)]
� a5= [switM(cam,advanced mode) ; tOn(basic mode)]

As shown in the example, it is desirable to identify thebestmitigation strategy. In this paper,
we propose two alternatives. The �rst alternative relies on a notion called likelihood of satisfac-
tion of concerns and the second alternative considers the uncertainty of actions.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework21

Likelihood of Satisfaction (LoS) of ConcernsWe introduce a notion calledlikelihood of sat-
isfaction (LoS) of concernand use it to distinguish mitigation strategies. Our notion relies
on the positive impacts of properties on concerns within the system (Subsection 2.4). For
example, propertysecure boot positively impactsIntegrity in Example 2 (denoted by
positiveImpact(secure boot,integrity)). For a concernc, we denote withrel+ (c) the
set of all properties that positively impact a concernc. Furthermore,rel+sat(c;s) is the set of
properties inrel+ (c) which hold in states. The ratio between these two numbers can be used to
characterize thepositive impact degreeof concernc in statesas follows:

deg+ (c;s) =

8
<

:

j rel+sat(c;s) j
j rel+ (c) j

if rel+ (c) 6= /0

1 otherwise
(7)

We note thatrel+sat andtw might appear similar but they are different in the following way:
rel+sat is concerned with the relationship between properties and concerns whiletw focuses on the
relationship between components and concerns.

We de�ne the likelihood of satisfaction of a concern as follows.

De�nition 8 (Likelihood of Concern Satisfaction)
Given a CPS systemS , a states in S , and a concernc, the likelihood of the satisfaction (LoS)
of c in s, denoted byj LoS(c;s), is de�ned by:

j LoS(c;s) =
�

deg+ (c;s) � Px2sub(c) j LoS(x;s) if sub(c) 6= /0
deg+ (c;s) if sub(c) = /0

(8)

wheresub(c) is the set of subconcerns ofc.

Having de�ned the LoS of different concerns, we can now use this notion in comparing mitiga-
tion strategies. It is worth to mention that CPSF de�nes nine aspect, i.e., top-level concerns, (e.g.,
trustworthiness , functionality , timing , etc.). LetTCW be the set of top-level concerns
in the CPS ontology. We discuss two possibilities:

� Weighted LoS: Each top-level concern is associated with a number, i.e., eachc 2 TCW

is associated with a weightWc (e.g.,Wf unctionality for functionality , Wtrustworthy for
trustworthiness , etc.). The weights represent the importance of the top-level concerns
in the CPS. They can be used to compute the weighted LoS of a systemS in states

w(S ;s) = Sc2TCWj LoS(c;s) � Wc (9)

This weighted LoS can be used to de�ne a preference relation between mitigation strategies
such asb � a (a is better thanb) iff maxs02F S (a ;s) w(S ;s0) � maxs02F S (b ;s) w(S ;s0).

� Speci�ed Preferences LoS: An alternative to the weighted LoS of a system is to allow
the users to specify a partial ordering over the setTCW which will be used to de�ne a
preference relation among mitigation strategies using well-known preference aggregation
strategies (e.g., lexicographic ordering). For example, ifFunctionality > Business
then a mitigation strategya is better than a mitigation strategyb, written asb � a , iff
maxs02F S (a ;s) j LoS(Functionality ;s0) � maxs02F S (b ;s) j LoS(Business ;s0) .

It is easy to see that the above preference relation� is also transitive, symmetric, and re�exive
and if some strategies exist then most preferred strategies can be computed.

Example 5(Continuing from Example 4)

22 Thanh H. Nguyen, et al.

Let us consider the strategies generated in Example 4. All �ve mitigation strategies (a1;a2;a3;a4

anda5) generated in Section 4.4 can be used to address the issue raised by the cyber-attack.
Speci�cally, the fragment of �nal state (Ga i) relevant toIntegrity concern of each plan (a i) is
given below:

� Ga1 is f CAM7! basic mode, CAM7! secure boot , SAM7! basic mode, SAM7!
secure boot , BAT7! powerful modeg or f CAM7! basic mode, CAM7! secure boot ,
SAM7! basic mode, SAM7! secure boot , BAT7! normal modeg.
In which, we de�neG1

a1
is f CAM7! basic mode, CAM7! secure boot , SAM7! basic mode,

SAM7! secure boot , BAT7! powerful modeg, andG2
a1

is f CAM7! basic mode, CAM7!
secure boot , SAM7! basic mode, SAM7! secure boot , BAT7! normal modeg.

� Ga2 and Ga3: f CAM7! advanced mode, CAM7! secure boot , SAM7! advanced mode,
SAM7! secure boot , BAT7! saving modeg

� Ga4 is f CAM7! basic mode, CAM7! secure boot , SAM7! advanced mode, SAM7!
secure boot , BAT7! normal modeg

� Ga5 is f CAM7! advanced mode, CAM7! secure boot , SAM7! basic mode, SAM7!
secure boot , BAT7! normal modeg
In each considered state, the statementX 7! P denotes that component X is working with

propertyP. For example,BAT7! saving modesays that the battery is working in saving mode.
Considering the �ve �nal con�gurations of different mitigation strategies in the example

above, we have:
deg+

�
Integrity;G1

a1

�
= 0.6, j LoS

�
Integrity;G1

a1

�
= 0.6 ;

deg+
�
Integrity;G2

a1

�
= 0.4, j LoS

�
Integrity;G2

a1

�
= 0.4 ;

deg+ (Integrity;Ga2) = 0.8, j LoS(Integrity;Ga2) = 0.8;
deg+

�
Integrity;Ga3

�
= 0.8, j LoS

�
Integrity;Ga3

�
= 0.8;

deg+ (Integrity;Ga4) = 0.6, j LoS(Integrity;Ga4) = 0.6 and
deg+

�
Integrity;Ga5

�
= 0.6, j LoS

�
Integrity;Ga5

�
= 0.6

We also have thatdeg+ (availability;) = 1, deg+ (security;) = 1, deg+ (trustworthiness;) = 1,
etc. In addition, we also have the LoS values oftrustworthiness aspect in the �ve different
�nal con�gurations as following:

j LoS
�
Trustworthiness;G1

a1

�
= 0.0497,

j LoS
�
Trustworthiness;G2

a1

�
= 0.0331,

j LoS(Trustworthiness;Ga2) = 0.0662,
j LoS

�
Trustworthiness;Ga3

�
= 0.0662,

j LoS(Trustworthiness;Ga4) = 0.0497, and
j LoS

�
Trustworthiness;Ga5

�
= 0.0497.

Figure 5 shows thetrustworthiness tree for the �nal con�gurations of mitigation strategies
a2 anda3 (Ga2 andGa3), where LoS values are computed and displayed as a number at the top-
left of each concern. In all 5 possible strategies, mitigation strategiesa2 anda3 are also the best
mitigation strategies which are especially relevant to thetrustworthiness attribute, where the
LoS of trustworthiness aspect in �nal state (Ga2 andGa3) is maximum. In this �gure, the
LoS of trustworthiness (root concern) is 0.0662 (llh sat(trustworthiness)=0.0662).
By applying a similar methodology for all remaining aspects (i.e.,business , functional ,
timing etc.), we can calculate LoS values for all nine aspects in CPS Ontology.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework23

Fig. 5: Trustworthiness concern tree with LoS of concerns computation

Mitigation Strategy with The Best Chance to SucceedPreferred mitigation strategies computed
using LoS of concern satisfaction assume that actions always succeeded. In practice, actions
might not always succeed. In this case, it is preferable to identify strategies with the best chance
of success. Assume that each actiona is associated with a set of statements of the form:

a successwith v if X (10)

wherev 2 [0;1] andX is a consistent set of literals inS . This statement says that if eachl 2 X is
true in a statesanda is executable insthenv is the probability ofa's execution inssucceeds. We
assume that ifa occurs in two statements “a successwith v1 if X1” and “a successwith v2 if X2”
with X1 6= X2 thenv1 = v2 or there existsp 2 F such thatf p; : pg � X1 [X2. Furthermore, for
a states in which no statement associated with some actiona is applicable, we assume thata
succeeds with probability 1 ins if it is executable ins. It is easy to see that this set of statements
de�nes a mappingpr : A� States! [0;1] whereStatesdenotes the set of all states ofS and
pr (a;s) represents the probability that the execution ofa in s succeeds. Thus, the execution of
a sequence of actions (or a strategy)a = [a0; : : : ;an� 1] in a states succeeds with the probability
Pn� 1

i= 0 pr (ai ;si) wheres0 = s, and fori > 0, si is the result of the execution ofai� 1 in si� 1. This
can be used to de�ne a preference relation between strategies similar to the use of LoS of con-
cern satisfaction, i.e., we prefer strategies whose probability of success is maximal. We omit the
formal de�nition here for brevity.

It is worth mentioning that the speci�cation by statements of the form (10) is at the action
level. It is assumed that if actiona succeeds with a probabilityv, it means that all of its potential
effects will be achieved with the probabilityv. In some applications, it might be more proper to

24 Thanh H. Nguyen, et al.

consider a �ner level of probabilistic speci�cation of effects such as if actiona succeeds then
with a probabilitypi , ei will be true, for i = 1; : : : ;k. To work with this type of applications, a
probabilistic action language such as the one proposed in Baral et al. (2002) or a speci�cation
using Markov decision process could be used. We will leave the discussion related to this type of
applications for the future.

4 An ASP-Based Implementation for Reasoning Tasks in CPS Theories

This section develops an ASP encoding given a CPS theory, building on the work on planning in
ASP and on formalizing CPS (e.g., Gelfond and Lifschitz (1993); Balduccini et al. (2018)). The
code is available athttps://github.com/thanhnh-infinity/Research_CPS . We
start with the encoding of the theory (Subsection 4.1). Afterwards, we develop, for each reasoning
task, an ASP module (Subsections 4.2–4.7) which, when added to the encoding of the domain,
will compute the answers for the task.

Throughout this section, we assume that(S ; I) whereS = (CO;A;F;R;G) is a CPS. The
encoding of(S ; I) in ASP will be denoted withP (S)n, wheren is a non-negative integer
representing the horizon of the system that we are interested in. We note that the encoding of
the CPS ontology (Subsection 2.1 and 2.4),P(W), will be automatically added to any program
developed in this section. For this reason, whenever we writeP (S)n we meanP (S)n [P(W).

4.1 ASP Encoding of a CPS Theory

The encoding of a CPS theory contains two parts, one encodes the domain and another the initial
state. We �rst discuss the encoding of the domain.

4.1.1 Encoding of the DomainS

P (S)n contains the following rules10.

� The set of rules declaring the time steps:for each 0� t � n, an atomstep(t), i.e., the rule
step(t) .

� The set of rules encoding the components:for eachco2 CO, an atomcomp(co).
� The set of rules encoding actions:for eacha 2 A, an atomaction(a).
� The set of rules encoding �uents:for eachf 2 F, an atomf luent(f).
� The set of rules encoding relations:for each co 2 CO and p 2 R(co), an atom

relation(co; p).
� The set of rules encoding functional dependencies:for each (c; f u; j) 2 G, an atom

f ormula
�
idj

�
, an atomaddFun

�
c; f u; idj

�
, and a set of atoms encodingj , whereidj

is a unique identi�er associated toj andc is a concern.
� The rules for reasoning about actions and changes (see, e.g., Son et al. (2006)):

— For each executability condition of the form (1) the rule:
exec(a;T) :� step (T) ; h� (p1;T) ; : : : ;h� (pn;T) :

10 We follow the convention in logic programming and use strings starting with lower/uppercase letter to denote con-
stants/variables. In addition, this program can be generated automatically given thatS is speci�ed in the syntax given
in Section 3.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework25

— For each dynamic causal law of the form (2):
h� (f ;T+1) :� step (T) ; occurs (a;T) ; h� (p1;T) ; : : : ;h� (pn;T) :

— For each state constraint of the form (3):
h� (f ;T) :� step (T) ; h� (p1;T) ; : : : ;h� (pn;T) :

— The rules encoding the inertia axiom:
h(f ;T+1) :� step (T) ;h(f ;T) ;not : h(f ;T+1) :
: h(f ;T+1) :� step (T) ; : h(f ;T) ;not h (f ;T+1) :

whereh� (x;T) stands forh(x;T) if x 2 F is a �uent and: h(y;T) if x = : y andy 2 F.

We illustrate the ASP encoding of a CPS by presenting the encoding of the LKAS theory in
Example 2. Listing 3 shows the encoding of components, actions, and relations ofS lkas without
the encoding of the initial state. Listing 4 shows the ASP encoding forGlkas (see Figure 3).

Listing 3: Example programP (S lkas)
n for LKAS

1 comp(sam). comp(cam). comp(bat).
2 relation (cam,algo_AES). relation (cam,algo_RSA).
3 relation (cam,algo_DES). relation (cam,ip_filtering).
4 relation (cam,conn_encrypted). relation (cam,data_encrypted).
5 relation (cam,protocol_encrypted). relation (cam,mac_check).
6 relation (cam,secure_boot). relation (cam,iris_scan).
7 relation (cam,advanced_mode). relation (cam,basic_mode).
8 relation (cam,trusted_auth_device). relation (cam,trusted_environment).
9 relation (sam,algo_AES). relation (sam,algo_RSA).

10 relation (sam,algo_DES). relation (sam,mac_check).
11 relation (sam,conn_encrypted). relation (sam,data_encrypted).
12 relation (sam,ip_filtering). relation (sam,secure_boot).
13 relation (sam,protocol_encrypted). relation (sam,firewall_setup).
14 relation (sam,advanced_mode). relation (sam,basic_mode).
15 relation (sam,finger_printing). relation (sam,two_factors).
16 relation (sam,iris_scan). relation (sam,oauth).
17 relation (sam,opt_code). relation (sam,email_verify).
18 relation (sam,ip_check). relation (sam,trusted_environment).
19 relation (bat,powerful_mode). relation (bat,normal_mode).
20 relation (bat,saving_mode). relation (bat,trusted_environment).
21 ...
22 action (tOn(X)) :- prop (X). action (tOff(X)) :- prop (X).
23 exec(tOn(X),T) :- : h(X,T), prop (X), step (T).
24 exec(tOff(X),T) :- h(X,T), prop (X), step (T).
25 h(X,T+1) :- occurs (tOn(X),T), step (T).
26 : h(X,T+1) :- occurs (tOff(X),T), step (T).
27 action (patch (X)):- prop (X).
28 exec(patch (X),T):- prop (X), availablePatch (X), : h(X,T), step (T).
29 h(X,T+1) :- occurs (patch (X),T), step (T).
30 ...
31 action (switM(cam,basic_mode)). action (switM(cam,advanced_mode)).
32 action (switM(sam,basic_mode)). action (switM(sam,advanced_mode)).
33 action (switM(bat,saving_mode)). action (switM(bat,normal_mode)).
34 action (switM(bat,powerful_mode)).
35 exec(switM(X,basic_mode),T) :- relation (X,basic_mode),
36 not h (active (X,basic_mode),T), comp(X), h(basic_mode,T), step (T).
37 h(active (X,basic_mode),T+1) :- occurs (switM(X,basic_mode),T), step (T).
38 : h(active (X,advanced_mode),T+1) :- occurs (switM(X,basic_mode),T),

26 Thanh H. Nguyen, et al.

39 h(active (X,advanced_mode),T), step (T).
40 exec(switM(X,advanced_mode),T) :- comp(X), relation (X,advanced_mode),
41 not h (active (X,advanced_mode),T), h(advanced_mode,T), step (T).
42 h(active (X,advanced_mode),T+1) :- occurs (switM(X,advanced_mode),T),

step (T).
43 : h(active (X,basic_mode),T+1):- step (T), h(active (X,basic_mode),T),

occurs (switM(X,advanced_mode),T).
44 ...

In Listing 3, Line 1 encodes the components; Lines 2–20 encode the relations; Lines 22–29
encode the actionstOn and tOff . The remaining lines of code encode other actions in similar
fashion.

Eachformulaj related to a concernc is associated with a unique identi�erj I and is converted
into a CNFj 1 ^ : : : ^ j k, eachj i will be associated with a unique identi�erj I

i . The set of
identi�ers are declared using the predicateformula/1 . It will be declared asdisjunction or
conjunction . Furthermore, set notation is used to encode a disjunction or conjunction, i.e., the
predicatemember(X,G) states that the formulaeX is a member of a disjunction or a conjunction
G. The predicatefunc(F,C) states thatF is the functional decomposition of concernC.

Listing 4: A part of ASP programP (S lkas)
n encoding Glkas for Integrity and

Authorization concerns

1 formula (0..3).
2 ...
3 concern (integrity).
4 conjunction (0). addConcern(integrity,0).
5 member(secure_boot,0). member(energy_func,0).
6 member(operation_func,0).
7 func (operation_func,integrity). func (energy_func,integrity).
8 disjunction (operation_func). formula (operation_func).
9 member(advanced_mode,operation_func).

10 member(basic_mode,operation_func).
11 disjunction (energy_func). formula (energy_func).
12 member(powerful_mode,energy_func). member(normal_mode,energy_func).
13 member(saving_mode,energy_func).
14 ...
15 concern (authorization).
16 conjunction (1). addConcern(authorization,1).
17 member(trusted_auth_device,1).
18 member(trusted_environment,1).
19 member(sign_in_func,1).
20 func (sign_in_func,authorization).
21 disjunction (sign_in_func).
22 formula (sign_in_func).
23 member(finger_printing,sign_in_func).
24 member(iris_scan,sign_in_func).
25 member(two_factors,sign_in_func).
26 member(2,sign_in_func). member(3,sign_in_func).
27 conjunction (2).
28 member(oauth,2). member(opt_code,2).
29 conjunction (3).
30 member(oauth,3). member(ip_check,3). member(email_verify,3).
31 ...

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework27

In Listing 4, the �rst line uses a special syntax, a short hand, declaring four
atoms formula(0) ,: : :,formula(3) . The declaration and encoding of theIntegrity
concern and its related formulas, properties and decomposition functions are presented
in Lines 3–13. In which, line 3 declares the concernIntegrity . Lines 4–6 en-
code the conjunctive formula (conjunction(0)) that addresses theIntegrity con-
cern and its membership (e.g., the propertysecure boot and the two decomposi-
tion functions of the Integrity concern). Line 7 speci�es the two functional de-
pendencies of theIntegrity concern which areoperation func and energy func .
Lines 8–13 specify how the formulae address the functional decompositions. Lines 8–
10 declare the disjunctive formulaoperation func and de�ne the membership be-
tween properties and this formula (e.g.,member(advanced mode,operation func) ,
member(basic mode,operation func) says thatadvanced mode andbasic mode are ele-
ments of the disjunctionoperation func). Similar encoding is applied for disjunctive formulae
energy func in Lines 11–13. Lines 15–30 encode information related to theAuthorization
concern.

4.1.2 Encoding of the Initial State

The encoding of the initial stateI of a CPS theory(S ; I), denoted byP (I), contains, for each
�uent f , h(f ;0) if f is true in I or : h(f ;0) if f is false inI . Listing 5 shows a snippet of
the initial state ofS lkas with Lines 1–7 specifying the true/false properties and Lines 9–17 the
speci�c information about which components operate in which properties in LKAS in the initial
state.

Listing 5: An example for a part of initial con�guration ofP (Ilkas)

1 h(finger_printing,0). h(oauth,0). h(ip_check,0).
2 h(two_factors,0). h(opt_code,0).
3 h(trusted_auth_device,0). h(trusted_environment,0). h(secure_boot,0).
4 h(powerful_mode,0). h(saving_mode,0). h(normal_mode,0).
5 h(basic_mode,0). h(advanced_mode,0).
6 ...
7 : h(iris_scan,0). : h(email_verify,0). : h(firewall_setup,0).
8 ...
9 h(active (sam,secure_boot),0). h(active (sam,algo_RSA),0).

10 h(active (sam,basic_mode),0). h(active (sam,data_encrypted),0).
11 h(active (sam,firewall_setup),0). h(active (sam,finger_printing),0).
12 h(active (sam,trusted_environment),0).
13 h(active (cam,ip_filtering),0). h(active (cam,data_encrypted),0).
14 h(active (cam,conn_encrypted),0). h(active (cam,secure_boot),0).
15 h(active (cam,trusted_auth_device),0). h(active (cam,basic_mode),0).
16 h(active (bat,powerful_mode),0). h(active (bat,trusted_environment),0).
17 ...

The following property (see, Son et al. (2006)) will be important for our discussion. It shows
thatP (S)n correctly computes the functionF S .

Proposition 3

28 Thanh H. Nguyen, et al.

Let s be a state inS . Let P = P (S)1 [f h� (f ;0) j f 2 sg. Assume thata is an action that is
executable ins. Then,s02 F S (a;s) iff there exists an answer setSof P [f occurs(a;0)g such
thatf h� (f ;1) j f 2 s0g � A.

It is worth mentioning thatP (S)n allows us to reason about effects of actions in the following
sense: assume that[a0; : : : ;an� 1] is a sequence of actions, thenP (S)n [f occurs(ai ; i) j i =
0; : : : ;n � 1g has an answer setS if and only if (i) a0 is executable in the stateI ; (ii) for each
i > 0, ai is executable after the execution of the sequence[a0; : : : ;ai� 1]; (iii) for eachi, the set
f f j f 2 F;h(f ; i) 2 Sg [f: f j f 2 F; : h(f ; i) 2 Sg is a state ofS .

4.2 Computing Satisfaction of Concerns

We will next present a set of ASP rules for reasoning about the satisfaction of concerns as spec-
i�ed in De�nitions 3–4. Since a concern is satis�ed ifall of its functional decompositions and
properties are satis�ed, we de�ne rules for computing the predicateh(sat (C) ;T) which states
that concernC is satis�ed at the stepT. The rules are given in Listing 6.

Listing 6:Psat : Concern Satisfaction Reasoning inW

1 formula (: G) :- formula (G).
2 prop (: G) :- prop (G).
3 h(: F,T):- step (T), 1{ formula (F); prop (F)}, : h(F,T).
4 h(F,T) :- step (T), formula (F), disjunction (F), member(G,F), h(G,T).
5 : h(F,T):- step (T), formula (F), disjunction (F), not h (F,T).
6 : h(F,T):- step (T), 1{ formula (G); prop (G)}, formula (F), conjunction (F),

member(G,F), not h (G,T).
7 h(F,T) :- step (T), formula (F), conjunction (F), not : h(F,T).
8 : h(sat(C),T) :- concern (C), addConcern(C,F), not h (F,T), step (T).
9 : h(sat(X),T) :- subCo(X,Y), not h (sat(Y),T), concern (X), concern (Y),

step (T).
10 : h(sat(X),T) :- subCo(X,Y), : h(sat(Y),T), concern (X), concern (Y),

step (T).
11 h(sat(C),T) :- not : h(sat(C),T), concern (C), step (T).

The �rst two lines declare that the negation of a formula or a property is also a formula and
thus can be a member of a disjunction or conjunction. The rule on Line 3 says thath(: F;T) is
true if the negation ofF is true. This rule uses a special syntax1f formula(F);prop(F) g which
says that there exists at least oneF is both a formula and a property. The rule on Line 4 states that
h(F;T) is true if F is a disjunction and one of its disjuncts is true. The next rule (Line 5) states
that: h(F;T) for a disjunctionF is true if it cannot be proven thatF is true. This rule applies the
well-known negation-as-failure operator in establishing the truth value of: h(F;T). Similarly,
the next two rules establish the truth value of a conjunctionF, i.e., h(F,T) is true if none of
its conjuncts is false. The remaining rules are used to establish the truth value ofh(sat (C) ;T),
the satisfaction of concernC at stepT. Line 8 states that if the formula addressing the concern
C cannot be proven to be true then the concern is not satis�ed. Rules in line 9-10 propagate
the unsatisfaction of a concern from its subconcerns. Finally, a concern is satis�ed if it cannot
be proven to be unsatis�ed (Line 11). We can prove the following proposition that relates the
implementation and De�nition 3.

Proposition 4(Concern Satisfaction)
For a CPS theoryD = (S ; I) and a concernc, c is satis�ed (or unsatis�ed) inI if h(sat(c) ;0)
(or : h(sat(c) ;0)) belongs to every answer set ofP (D), whereP (D) = P (S)0 [P (I) [Psat.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework29

Proof
It is easy to see that for any formulaj over the �uents inS , the encoding and the rules encoding
a formula, and the rules in Lines 1–7,I j= L (c) iff h(sat(L (c)I);0) belongs to every answer set
of P(D) whereL (c)I is the identi�er associated to the formulaL (c). Lines 9–10 show that ifc
has a sub-concern that is not satis�ed then it is not satis�ed and hence Rule 11 cannot be applied.
As such, we have thath(sat(c);0) is in an answer set ofP(D) iff the formulaL (c) is true and all
sub-concerns ofc are satis�ed in that answer set iffc is satis�ed inI .

Since we will be working with the satisfaction of concerns in the following sections, we will
therefore need to includePsat in P (S)n. From now on, whenever we refer toP (S)n, we mean
P (S)n [P (I) [Psat.

4.3 Computing Most/Least Trustworthy Components

Proposition 1 shows that� s has min/maximal elements, i.e., least/most trustworthy components
of a system always exist. The programPmlt (S) for computing these components is listed below.

Listing 7:Pmlt: Computing Most/Least Trustworthy Components

1 r (X,P,C,T) :- comp(X), prop (P), concern (C), step (T), h(active (X,P),T),
h(P,T), addBy(C,P).

2 pos(X,P,C,T) :- r (X,P,C,T), positiveImpact (P,C), h(sat(C),T), step (T).
3 nPos(X,P,C,T):- r (X,P,C,T), not positiveImpact (P,C), step (T).
4 nPos(X,P,C,T):- r (X,P,C,T), not h (sat(C),T), step (T).
5 pos(X,P,C,T) :- pos(X,P,C 1,T), subCo(C,C 1), step (T).
6 nPos(X,P,C,T):- nPos(X,P,C 1,T), subCo(C,C 1), step (T).
7 twcp(X,TW,T) :- TW= #count {C,P: pos(X,P,C,T), prop (P), concern (C)},

comp(X), step (T).
8 twcn(X,TW,T) :- TW= #count {C,P: nPos(X,P,C,T), prop (P), concern (C)},

comp(X), step (T).
9 higher (X 1,X 2,T) :- twcp(X 1,TWp1,T), twcp(X 2,TWp2,T), twcn(X 1,TWn1,T),

twcn(X 2,TWn2,T), d1=TWp1/(TWn1 + 1), d2=TWp2/(TWn2 + 1), d1 > d2,
step (T), TWp1!=0, TWp2!=0.

10 higher (X 1,X 2,T):- step (T), twcp(X 1,0,T), twcp(X 2,0,T), twcn(X 1,TWn1,T),
twcn(X 2,TWn2,T), TWn1 < TWn2.

11 equal (X 1,X 2,T) :- twcp(X 1,TWp1,T), twcp(X 2,TWp2,T), twcn(X 1,TWn1,T),
twcn(X 2,TWn2,T), d1=TWp1/(TWn1 + 1), d2=TWp2/(TWn2 + 1), d1 = d2,
step (T), TWp1!=0, TWp2!=0.

12 equal (X 1,X 2,T) :- step (T), twcp(X 1,0,T), twcp(X 2,0,T), twcn(X 1,TWn1,T),
twcn(X 2,TWn2,T), TWn1=TWn2.

13 not highestTW(X 2,T) :- comp(X 1), comp(X 2), higher (X 1,X 2,T), step (T).
14 not lowestTW(X 1,T) :- comp(X 1), comp(X 2), higher (X 1,X 2,T), step (T).
15 most(X,T) :- comp(X), not not highestTW(X,T), step (T).
16 least (X,T) :- comp(X), not not lowestTW(X,T), step (T).

In Listing 7, addBy(C,P) and positiveImpact(P,C) are de�ned in the programP(W)
(Subsection 2.4).addBy(C,P) is true means that a propertyP addresses a concernC.
positiveImpact(P,C) is true means that the satisfaction of propertyP impacts positively
on the satisfaction of concernC. The predicater(X,P,C,T) (Line 1) encodes the relation-
ship betweenX, P and C at the timeT which says that the componentX is working with
the propertyP at time T and P addresses concernC. The second rule (Line 2) de�nes the
predicatepos(X,P,C,T) that encodes the positive affected relationship between component
X and concernC at time stepT through propertyP which is true if the concernC is satis�ed

30 Thanh H. Nguyen, et al.

andpositiveImpact(P,C) andr(X,P,C,T) hold. Lines 3–4 de�nenPos(X,P,C,T) , which
holds at timeT if r(X,P,C,T) holds but eitherpositiveImpact(P,C) is not de�ned inW
or concernC is not satis�ed. This element is used for the computation of the denominator of
Equation (6). The rest of the listing de�nes the relationshiphigher between components en-
coding the� T whereT represents the state at the timeT of the system and identifying the most
and least trustworthy components. Lines 5–6 propagate thepositive affectedandimpactrelations
(pos/4 , nPos/4) of a concern from its subconcerns.twcp(x;tw;t) (resp.twcn(x;tw;t)) encodes
the number of concerns positively affected (resp. impacted) by componentx at stept. The atom
#count f C;P: pos(X;C;P;T) ;prop (P) ;concern (C)g is an aggregate atom in ASP and encodes
the cardinality of the set of all concerns positively impacted byP andX.

We can show that the following proposition holds.

Proposition 5
For a CPS theoryD = (S ; I) and an answer setS of program P (S)n [P (I) [Pmlt, if
most(x;t) 2 S (resp.least(x;t) 2 S) thenx is a most (resp. least) trustworthy component in the
statest .

The proof follows immediately from the de�nition of the predicateaddBy, positiveImpactand
the de�nition of aggregate functions in ASP. As such, to identify the most trustworthy component
of S , we only need to compute an answer setSof P (S)n [P (I) [Pmlt and use Proposition 5.

Example 6
Consider theS lkas domain.

� Let us consider the initial con�gurationI1
lkas of LKAS system where every properties are ob-

served to be true. ForDlkas =
�
S lkas; I1

lkas

�
, we can easily see that (from Figure 2) the atoms:

pos(cam;advancedmode; integrity;0), pos(cam;secureboot;cyber security;0), etc. belong to
every answer set ofP (Dlkas) = P (S lkas)

n [P
�
I1
lkas

�
[P lkas

mlt . Similar atoms are present to
record the number of concerns affected by different properties. Furthermore,twcp(cam;28;0),
twcn(cam;6;0), twcp(sam;40;0), twcn(sam;0;0), twcp(bat;6;0) andtwcn(bat;5;0) belong to
any answer set ofP (S lkas)

n [P
�
I1
lkas

�
[P lkas

mlt : SAMis the most trustworthy component;BAT
is the least trustworthy components at step 0.

� Now, let us considerI2
lkas of LKAS system (Figure 2) where there are two properties that are ob-

served to beFalse: Firewall-Setup andTrusted-Auth-Device . For Dlkas =
�
S lkas; I2

lkas

�
,

the computation of the programP (S lkas)
n [P

�
I2
lkas

�
[P lkas

mlt shows us:twcp(cam;22;0),
twcn(cam;6;0), twcp(sam;22;0), twcn(sam;12;0), twcp(bat;0;0) andtwcn(bat;11;0) belong
to any answer set ofP (S lkas)

n [P
�
I2
lkas

�
[P lkas

mlt . In this situation,CAM is the most trustworthy
component;BAT is the least trustworthy components at step 0.

We conclude this part with a brief discussion on possible de�nitions of� . The proposed de�-
nition assumes everything being equal (e.g. all concerns and properties are equally important, the
roles of every components in a CPS system are equal, etc.). In practice, the ordering� might be
qualitative and user-dependent, e.g., an user might prefer con�dentiality over integrity.� can be
de�ned over a qualitative ordering and implemented in ASP in a similar fashion that preferences
have been implemented (e.g., Gelfond and Son (1998)).

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework31

4.4 Computing Mitigation Strategies

The programP (S)n [Psat can be for computing a mitigation strategy by adding the rules shown
in Listing 8:

Listing 8:Pn
plan: Generating Plan

1 1{ occurs (A,T): action (A)}1 :- step (T), T<n.
2 :- occurs (A,T), not exec (A,T).
3 :- not h (sat(c), n).

The �rst rule containing the atom1f occurs (A;T) : action (A)g1 — a choice atom — is intu-
itively used to generate the action occurrences and says that at any stepT, exactly one action
must occur. The second rule states that an action can only occur if it is executable. The last
rule helps enforce thath(sat(c) ;n) must be true in the last state, at stepn. For a set of con-
cernsS, let Pn

plan[S] be the program obtained fromPn
plan by replacing its last rule with the set

f :� not h (sat (c) ;n) : j c 2 Sg. Based on the results in answer set planning, we can show:

Proposition 6
Let D= (S ; I) be a CPS theory andS be a set of concerns inW. Then,[a0; : : : ;an� 1] is a mitiga-
tion strategy forS iff P (D) [Pn

plan[S] has an answer setSsuch thatoccurs(ai ; i) 2 S for every
i = 0; : : : ;n� 1.

The proof of this proposition relies on the properties ofP (D) discussed in previous section and
the set of constraints inPn

plan[S].

4.5 Non-compliance Detection in CPS Systems

The programP (S)n [Psat can be used in non-compliance detection by adding the rules shown
in Listing 9:

Listing 9:Pn (SA;SC): Non-compliance Detection

1 1{ occurs (A,T): sa action (A)}1 :- step (T), T<n, not conflict (T).
2 :- occurs (A,T), not exec (A,T), step (T).
3 1{ h(F,0); : h(F,0)}1 :- fluent (F).
4 conflict (T) :- sc concern (C), : h(sat(C),T), step (T).
5 conflict (T+1) :- conflict (T), step (T).
6 :- not conflict (n).

The �rst two rules are similar to the rules for the planning program, with the exception that the
action selection focuses on the actions in the setSA. The third rule generates an arbitrary initial
state. The rules 4-5 state that if some concern inSCis not satis�ed at timeT then a con�ict arises
and the constraint on the last rule says that we would like to create a con�ict at stepn.

We assume that actions inSAare speci�ed by atoms of the formsa action(a) and concerns
in SCare speci�ed by atoms of the formsc concern(c). It is easy to see that an answer setSof
P (S)n [Psat[Pn (SA;SC) represents a situation in which the system will eventually not satisfy
some concern inSC. Speci�cally, if the sequence of actions[a0; : : : ;at] such thatoccurs(ai ; i) 2 S
and, fors> t, there exists nooccurs(as;s) 2 S, is executed in the initial state (the setf f j h(f ;0) 2
S; f 2 Fg[f: f j : h(f ;0) 2 S; f 2 Fg) then some concern inSCwill not be satis�ed aftern steps.
In other words, to check whetherS is weaklyn-noncompliant, we only need to check whether
pn = P (S)n [Psat [Pn (SA;SC) as an answer set of not. The proof of this property relies on
the de�nition of an answer set for a program with constraints, which say that the constraint:-

32 Thanh H. Nguyen, et al.

not conflict(n). must be false in the answer set, which in turn implies thatconflict(n)
must be true.

If S is weakly n-noncompliant, we can do one more check to see whether it is strongly
n-complaint as follows. Letp0

n be a program obtained frompn by replacing “:- not
conflict(n) ” with “ :- conflict(n). ” We can show that ifp0

n has no answer set then for
every initial state ofS no action sequence is executable or there exists some action sequence
such thatconflict(n). is true. Combining with the fact thatS is weaklyn-noncompliant,
this implies that the domain is stronglyn-noncompliant. Again, the proof of this property relies
on the de�nition of answer sets of programs with constraints, which say that the constraint:-
conflict(n). must be false in an answer set, which in turn implies thatconflict(n) must
be false. However, the program having no answer set implies that every executable sequence of
actions will generateconflict(n) .

4.6 Likelihood of Concerns Satisfaction and Preferred Mitigation Strategies

In this subsection, we present an ASP program for computing LoS of concerns and preferred mit-
igation strategies using LoS. Listing 10 shows the ASP encoding for computing of LoS of con-
cerns. It de�nes the predicatellh sat(C,N,T) which states that the likelihood of satisfaction of
concernC at time stepT is N. It starts with the de�nition of different predicatesnAllPosCon/3
andnActPosCon/3 representingrel+ (c) andrel+sat(c;s) at the stepT, i.e., the number of all
possible positively impacting properties on concernC and the number of positively impacting
properties on concernC holding in stepT, respectively. Recall thatpositiveImpact(P,C) is
de�ned as in Subsection 4.3. Line 5 creates an ordering between subconcerns of concernC for
the computation ofllh sat(C,N,T) . The LoS for a concern without a subconcern is computed
in Line 8. Rules on the lines 9-12 compute the LoS of concerns in accordance with the order
created by rule on Line 1.llh sat(C,N,T) is then computed using Equation 8.

Listing 10:PLoS: Computing Likelihood of Concerns Satisfaction

1 nAllPosCon(C,N2,T):- concern (C), step (T), N2= #count {P,Com : comp(Com),
prop (P), positiveImpact (P,C), addBy(C,P), relation (Com,P)}.

2 nActPosCon(C,N1,T):- concern (C), step (T), N1= #count {P,Com : comp(Com),
prop (P), positiveImpact (P,C), addBy(C,P), relation (Com,P),

h(active (Com,P),T)}.
3 deg pos(C,1,T) :- step (T), concern (C), nAllPosCon(C,0,T).
4 deg pos(C,N1 * 100/N2,T) :- nAllPosCon(C,N2,T), nActPosCon(C,N1,T),

concern (C), N2!=0.
5 order (SC,C,N) :- subCo(C,SC), N={SC < SCp : subCo(C,SCp)}.
6 hSubCo(C) :- subCo(C,SC), concern (C), concern (SC).
7 : hSubCo(C):- concern (C), not hSubCo(C).
8 l lh sat sub(C,1,T) :- step (T), concern (C), : hSubCo(C).
9 llh sat (C,N1 * N2,T) :- step (T), concern (C), l lh sat sub(C,N1,T),

deg pos(C,N2,T).
10 l lh sat sub aux(C,0,X,T) :- step (T), subCo(C,SC), order (SC,C,0),

l lh sat (SC,X,T).
11 l lh sat sub aux(C,N,X * Y,T) :- step (T), subCo(C,SC), order (SC,C,N),

l lh sat (SC,Y,T), l lh sat sub aux(C,N-1,X,T).
12 l lh sat sub(C,X,T) :- l lh sat sub aux(C,N,X,T), step (T), concern (C),

not l lh sat sub aux(C,N+1,_,T).

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework33

It is easy to check that the above program correctly computes the values ofdeg+ (c;s) and
j LoS(c;s). Indeed, the programP (Dlkas) = P (S lkas)

n [P (Ilkas) [Pc
lkas [Psat [Pn

plan [PLoS

correctly computes the LoS of concerns for various concerns as shown in Subsection 3.3.3 (Fig-
ure 5).

Having computed LoS of concerns andj LoS, identifying the best strategies in according to the
two approaches in Subsection 3.3.3 is simple. We only need to add rules that aggregates the LoS
of the top-level concerns speci�ed in the CPS with their corresponding weights or preferences.
This is done as follows:

� Weighted LoS: Listing 11 computes the weighted LoS of the �nal state. The rule is self-
explanatory.

Listing 11: Computing Weighted LoS

1 scoreLoS(Sc,T) :- l lh sat (functionality,V f un,T), wLoS(
functionality,W f un), l lh sat (business,V bus,T), wLoS(business,W bus
), l lh sat (human,V hum,T), wLoS(human,W hum), l lh sat (
trustworthiness,V tru,T), wLoS(trustworthiness,W tru), l lh sat (
timing,V tim,T), wLoS(timing,W tim), l lh sat (data,V dat,T), wLoS(
data,W dat), l lh sat (boundaries,V bou,T), wLoS(boundaries,W bou),
l lh sat (composition,V com,T), wLoS(composition,W com), l lh sat (
lifestyle,V li f ,T), wLoS(lifestyle,W li f), Sc = V f un* Wf un + Vbus* Wbus
+ Vhum* Whum + Vtru* Wtru + Vtim* Wtim + Vdat* Wdat + Vbou* Wbou + Vcom* Wcom +
Vli f * ,Wli f .

� Speci�ed Preferences LoS: ASP solver provides a convenient way for computing
preferences based on lexicographic order among elements of a set. Assume that
Trustworthiness is preferred toBusiness then the two statements

#maximize f V1@k : llh sat(trustworthiness, V1, n) g
#maximize f V2@k': llh sat(business, V2, n) g

with k > k0 andn is the length of the plan will return answer sets in the lexicographic
order, preferring the concernTrustworthiness overBusiness . With these statements,
any speci�ed preferred LoS over the set of top-level concern can be implemented easily.

4.7 Computing Mitigation Strategy with The Best Chance to Succeed

To compute strategies with the maximal probability of success, we only need to extend the pro-
gramPn

plan with the following rules:

� for each statement “a successwith v if p1; : : : ; pn”, the two rules:
pr (a;v;T) :� h� (p1;T) ; : : : ;h� (pn;T) :
dpr (a;T) :� h� (p1;T) ; : : : ;h� (pn;T) :

which check for the satisfaction of the condition in a statement de�ning the probability of
success in the stepT and states that it is de�ned.

� the rule:
pr (A;1;T) :� exec(A;T) ;not dpr (A;T) :

which says that by default, the probability of success ofa at stepT is 1.
� computing the probability of the state at stepT:

prob (1;0) :
prob (U� V;T+1) :� prob (U;T) ;occurs (A;T) ;pr (A;V;T) :

where the �rst rule says that the probability of the state at the time 0 is 1;prob(v;t) states

34 Thanh H. Nguyen, et al.

that the probability of reaching the state at the stept is v and is computed using the second
rule.

Let Pn
bestPrSbePn

plan and the above rules. We have that if[a0; : : : ;an� 1] andSis an answer set of

P (D) [Pn
bestPrS[f occurs(ai ; i) j i = 0; : : : ;n� 1g thenprob

�
Pn� 1

i= 0 pr (ai ;si) ;n
�

2 S. To compute
the best strategy, we add the rule

#maximizef V: prob (V;n)g:
to the programPn

bestPrS.

Example 7
Continue with Example 2 after a cyber-attack occurs and causes the propertybasic-mode to
be False. As in Section 4.4, the �ve mitigation strategies (a1;a2;a3;a4 and a5) are gener-
ated to restore the LKAS system. Assume that the probability of success oftOn(basic mode),
switM (cam;advanced mode), andswitM (sam;advanced mode) are 0.2, 0.6, 0.7 in every state,
respectively. In this case, the strategiesa2 anda3 have the maximal probability to succeed.

5 Towards a Decision-Support System for CPSF

As a demonstration of the potential use of our approach, in this section we give a brief overview
of a decision-support system (version 0.1) that is being built for use by CPS designers, managers
and operators. We also include preliminary considerations on performance aspects.

Fig. 6: Computing Satisfaction of Concerns in Reasoning Component

The decision-support system relies on an ASP-based implementation for reasoning tasks in
CPS theories (described in Section 4) with the different modules for answering queries described
in Section 3.3, and comprises areasoning componentand avisualization component. Figure 6
shows thereasoning componentat work on computing satisfaction of concerns related to the
LKAS domain example (described in Section 4.2). Figure 7 illustrates the reasoning component
at work on other modules (Section 4.3– 4.7) with different situations related to the LKAS domain.
Notice how the user can ask the system to reason about satisfaction of concerns, to produce
mitigation plans as well as to select the most preferred mitigation strategy, etc.

The output of the reasoning component can then be fed to thevisualization component, where
advanced visualization techniques allow practitioners to get a birds-eye view of the CPS or dive

	Introduction
	Background
	NIST CPS Framework and the CPS Ontology
	Answer Set Programming
	Action Language B
	Representation and Reasoning with CPS Ontology in ASP

	CPS Theory Specification
	Formal Definition
	The Semantics of CPS Theories
	Reasoning Tasks in CPS

	An ASP-Based Implementation for Reasoning Tasks in CPS Theories
	ASP Encoding of a CPS Theory
	Computing Satisfaction of Concerns
	Computing Most/Least Trustworthy Components
	Computing Mitigation Strategies
	Non-compliance Detection in CPS Systems
	Likelihood of Concerns Satisfaction and Preferred Mitigation Strategies
	Computing Mitigation Strategy with The Best Chance to Succeed

	Towards a Decision-Support System for CPSF
	Related Work
	Conclusions and Future Work
	References

